Solution for Problem 2

Satoshi Yoshida
If B is moving with speed v_{B} in the A ' s frame and A is moving with speed v_{A} in the same direction as B in the frame 0 , then the speed of A in the frame 0 is $v_{B}^{\prime}=\frac{v_{A}+v_{B}}{1+\frac{v_{A} v_{B}}{c^{2}}}$. Let $v_{A}=c \tanh u_{A}, \quad v_{B}=c \tanh u_{B}$ and $v_{B}^{\prime}=c \tanh u_{B}^{\prime}$. Then, $u_{B}^{\prime}=u_{A}+u_{B}$ because of the addition theorem of hyperbolic tangent. I call u_{A}, u_{B} and u_{B}^{\prime} rapidity. For example, u_{A} is the rapidity of A in the frame 0.

Let τ be the proper time of the spaceship and two missiles are launched at $\tau=0$. Let 0 be the inertial frame that is moving at the same speed as the spaceship at $\tau=0$. Let t be the time in the frame 0 and $t=0$ at $\tau=0$. Let v_{S} be the speed of the spaceship and u_{S} be the rapidity of the space ship in the frame 0 . The spaceship catches the first and the second missile at $\tau=\tau_{1}, \tau_{2}$, respectively. $t=t_{1}, t_{2}$ at $\tau=\tau_{1}, \tau_{2}$, respectively.
If the speed v is small, the rapidity is $u \cong \frac{v}{c}$ because $v=c \tanh u \cong c u$. Therefore,

$$
\frac{\mathrm{d} u_{S}}{\mathrm{~d} \tau}=\frac{g}{c}
$$

At $\tau=0$, the speed of the spaceship in the frame 0 is 0 . Then,

$$
\begin{gathered}
u_{S}=\frac{g}{c} \tau \\
v_{S}=c \tanh u_{S}=c \tanh \frac{g}{c} \tau
\end{gathered}
$$

Because the first missile is caught at $t=t_{1}$,

$$
\int_{0}^{t_{1}} v_{S} \mathrm{~d} t=\int_{0}^{t_{1}} v \mathrm{~d} t
$$

Substituting $\mathrm{d} t=\frac{\mathrm{d} \tau}{\sqrt{1-\left(\frac{v_{S}}{c}\right)^{2}}}=\cosh \frac{g}{c} \tau \mathrm{~d} t$ and $v_{S}=c \tanh \frac{g}{c} \tau$,

$$
\begin{aligned}
& \int_{0}^{\tau_{1}} c \sinh \frac{g}{c} \tau \mathrm{~d} \tau=\int_{0}^{\tau_{1}} v \cosh \frac{g}{c} \tau \mathrm{~d} \tau \\
& \frac{c^{2}}{g}\left(\cosh \frac{g}{c} \tau_{1}-1\right)=\frac{c v}{g} \sinh \frac{g}{c} \tau_{1}
\end{aligned}
$$

Let $\xi=\exp \frac{g}{c} \tau_{1}$, then,

$$
c\left(\frac{\xi+\xi^{-1}}{2}-1\right)=v \frac{\xi-\xi^{-1}}{2}
$$

$$
\begin{gathered}
(c-v) \xi^{2}-2 c \xi+c+v=0 \\
\xi=\frac{c \pm v}{c-v}
\end{gathered}
$$

Because $\tau_{1}>0, \xi>1$. Then,

$$
\xi=\frac{c+v}{c-v}
$$

Therefore,

$$
\tau_{1}=\frac{c}{g} \log \frac{c+v}{c-v}
$$

Similarly,

$$
\tau_{2}=\frac{c}{g} \log \frac{c+2 v}{c-2 v}
$$

In conclusion, the proper time interval in the spaceship between catching the first missile and catching the second missile is

$$
\tau_{2}-\tau_{1}=\frac{c}{g}\left(\log \frac{c+2 v}{c-2 v}-\log \frac{c+v}{c-v}\right)
$$

