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We will make use of the fact that in a suitable reference frame the position of the spaceship
can be described by the following hyperbola:
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This can be written in the following form, where 7 is the imaginary unit:
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This is indeed the equation of a circle in the x-ict diagram, with radius % and centre (—%, O):
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Here § is the world line of the spaceship, P and () are the events when the faster and slower
missiles are caught respectively, O is the centre of S, A is the origin of the diagram, B is the
orthogonal projection of P to axis ict, § = POAZ and 6, = QOAZ.

It is clear that P = (2uts, icts) for some to as the faster missile moves with constant speed 2v.
To obtain the proper time we have to find the length of the arc P() which is simply:
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Triangle POA is isosceles, so PAO/Z = 90° — %2, thus:

PAB/ = %

From the right triangle PAB:
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Using Euler’s identity:
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Substituting (3) into (2):
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This yields:
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With the same train of thoughts:

6, = —2itanh™! (%) (5)

Substituting (4) and (5) into (1):
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From this:



