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We will make use of the fact that in a suitable reference frame the position of the spaceship
can be described by the following hyperbola:(
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This can be written in the following form, where i is the imaginary unit:(
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This is indeed the equation of a circle in the x-ict diagram, with radius c2
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Here S is the world line of the spaceship, P and Q are the events when the faster and slower
missiles are caught respectively, O is the centre of S, A is the origin of the diagram, B is the
orthogonal projection of P to axis ict, θ2 = POA∠ and θ1 = QOA∠.
It is clear that P = (2vt2, ict2) for some t2 as the faster missile moves with constant speed 2v.
To obtain the proper time we have to find the length of the arc PQ which is simply:
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Triangle POA is isosceles, so PAO∠ = 90◦ − θ2
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, thus:
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From the right triangle PAB:
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Using Euler’s identity:
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Substituting (3) into (2):
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This yields:
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With the same train of thoughts:
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Substituting (4) and (5) into (1):
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From this:

τ =
2c

g

(
tanh−1

(
2v

c

)
− tanh−1

(v
c

))

2


