Physics Cup - Problem 2
 Geometric Solution

Balázs Németh
Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium
nemethbalazs2000@gmail.com

We will make use of the fact that in a suitable reference frame the position of the spaceship can be described by the following hyperbola:

$$
\left(x+\frac{c^{2}}{g}\right)^{2}-(c t)^{2}=\frac{c^{4}}{g^{2}}
$$

This can be written in the following form, where i is the imaginary unit:

$$
\left(x+\frac{c^{2}}{g}\right)^{2}+(i c t)^{2}=\frac{c^{4}}{g^{2}}
$$

This is indeed the equation of a circle in the x-ict diagram, with radius $\frac{c^{2}}{g}$ and centre $\left(-\frac{c^{2}}{g}, 0\right)$:

Here \mathcal{S} is the world line of the spaceship, P and Q are the events when the faster and slower missiles are caught respectively, O is the centre of \mathcal{S}, A is the origin of the diagram, B is the orthogonal projection of P to axis $i c t, \theta_{2}=P O A \angle$ and $\theta_{1}=Q O A \angle$.
It is clear that $P=\left(2 v t_{2}, i c t_{2}\right)$ for some t_{2} as the faster missile moves with constant speed $2 v$. To obtain the proper time we have to find the length of the arc $P Q$ which is simply:

$$
\begin{equation*}
i c \tau=\frac{c^{2}}{g}\left(\theta_{1}-\theta_{2}\right) \tag{1}
\end{equation*}
$$

Triangle $P O A$ is isosceles, so $P A O \angle=90^{\circ}-\frac{\theta_{2}}{2}$, thus:

$$
P A B \angle=\frac{\theta_{2}}{2}
$$

From the right triangle $P A B$:

$$
\begin{equation*}
\tan \frac{\theta_{2}}{2}=\frac{P B}{A B}=\frac{2 v t_{2}}{i c t_{2}}=\frac{2 v}{i c}=-i \frac{2 v}{c} \tag{2}
\end{equation*}
$$

Using Euler's identity:

$$
\begin{equation*}
\tan x=\frac{\sin x}{\cos x}=\frac{e^{i x}-e^{-i x}}{2 i} \cdot \frac{2}{e^{i x}+e^{-i x}}=\frac{1}{i} \cdot \frac{e^{i x}-e^{-i x}}{e^{i x}+e^{-i x}}=-i \tanh (i x) \tag{3}
\end{equation*}
$$

Substituting (3) into (2):

$$
-i \frac{2 v}{c}=-i \tanh \frac{i \theta_{2}}{2}
$$

This yields:

$$
\begin{equation*}
\theta_{2}=-2 i \tanh ^{-1}\left(\frac{2 v}{c}\right) \tag{4}
\end{equation*}
$$

With the same train of thoughts:

$$
\begin{equation*}
\theta_{1}=-2 i \tanh ^{-1}\left(\frac{v}{c}\right) \tag{5}
\end{equation*}
$$

Substituting (4) and (5) into (1):

$$
i c \tau=\frac{c^{2}}{g}\left(-2 i \tanh ^{-1}\left(\frac{v}{c}\right)+2 i \tanh ^{-1}\left(\frac{2 v}{c}\right)\right)
$$

From this:

$$
\tau=\frac{2 c}{g}\left(\tanh ^{-1}\left(\frac{2 v}{c}\right)-\tanh ^{-1}\left(\frac{v}{c}\right)\right)
$$

