In the spaceship's rest frame, according to Newton's 2nd law, we have $F_{s}=m g$. Transforming this force into the lab frame, and using the fact that parallel forces do not alter in different frames, we obtain: $F_{l a b}=m g$. Using that $F_{l a b}=\frac{d p}{d t}$, where p is momentum and t time measured by the lab frame, we get $\frac{d p}{d t}=m g$. Integrating this equation, we obtain equation (1) for the momentum p :

$$
\begin{equation*}
p=m g t \tag{1}
\end{equation*}
$$

Using the definition of relativistic momentum $=\frac{m v}{\sqrt{1-(v / c)^{2}}}$, substituting equation (1) and isolating v, we obtain equation (2):

$$
\begin{equation*}
v(t)=\frac{g t}{\sqrt{1+(g t / c)^{2}}} \tag{2}
\end{equation*}
$$

In order to find displacement $x(t)$ measured by the lab frame we integrate equation (2), obtaining equation (3):

$$
\begin{equation*}
x(t)=\frac{c^{2}}{g}\left(\sqrt{1+(g t / c)^{2}}-1\right) \tag{3}
\end{equation*}
$$

Rearranging equation (3) we obtain equation (4) which defines a hyperbola as below:

$$
\begin{equation*}
\left(\frac{g x}{c^{2}}+1\right)^{2}-\left(\frac{g t}{c}\right)^{2}=1 \tag{4}
\end{equation*}
$$

Defining y as $y=c t i$, isolating $t=\frac{y}{c i}$ and substituting into equation (4) we get:

$$
\begin{equation*}
\left(\frac{g x}{c^{2}}+1\right)^{2}+\left(\frac{g y}{c^{2}}\right)^{2}=1 \tag{5}
\end{equation*}
$$

Equation (7) defines a circle with radius $R=\frac{c^{2}}{g}$, and center coordinates $\left(x_{c}, y_{c}\right)=\left(-\frac{c^{2}}{g}, 0\right)$. Using this equation we can plot the graph below, where O is the center of the circle. We also have that $\alpha_{1}=\pi-$ $2 \theta_{1}$ and also $\alpha_{2}=\pi-2 \theta_{2}$.

Let $d S$ be the length of an infinitesimal arc with height $d y$ and width $d x$, such that $d S=\sqrt{(d x)^{2}+(d y)^{2}}$. Since $y=c t i$, we have $d y=c i d t$, which substituted into $d S$, results in: $d S=\sqrt{(d x)^{2}-(c d t)^{2}}=i \sqrt{(c d t)^{2}-(d x)^{2}}=-i c d \tau$, where $c d \tau=\sqrt{(c d t)^{2}-(d x)^{2}}$.

Using $d S=i c d \tau$, and integrating the equation, we obtain equation (6) where $\Delta \alpha=\alpha_{2}-\alpha_{1}$:

$$
\begin{equation*}
\int_{S_{0}}^{S} d S=-i c \int_{\tau_{1}}^{\tau_{2}} d \tau \Leftrightarrow R \Delta \alpha=-i c \Delta \tau \tag{6}
\end{equation*}
$$

In the figure above we have the motion of the first and second rocket in the y_{1} and y_{2} lines respectively. Since their motion is given by $x_{1}=v t$ and $x_{2}=2 v t$, and that $y=c t i \Leftrightarrow t=\frac{y}{c i}$, therefore the lines have equations:

$$
\begin{align*}
& y_{1}=\frac{c i}{v} x \tag{7}\\
& y_{2}=\frac{c i}{2 v} x \tag{8}
\end{align*}
$$

The angles θ_{1} and θ_{2} formed between the x axis and the y_{1} and y_{2} lines are given by $\theta_{1}=\arctan \left(\frac{c i}{v}\right)$ and $\theta_{2}=\arctan \left(\frac{c i}{2 v}\right)$ respectively.

Using that $\tan (\theta)=\tan \left(\frac{\pi-\alpha}{2}\right)=\frac{1}{\tan \left(\frac{\alpha}{2}\right)}$, which implies that $\tan \left(\frac{\alpha_{1}}{2}\right)=-\frac{i v}{c}$ and also $\tan \left(\frac{\alpha_{2}}{2}\right)=-\frac{2 i v}{c}$, and also the mathematical definition $\arctan (i x)=i \operatorname{arctanh}(x)$ we obtain $\alpha_{1}=-2 \operatorname{iarctanh}\left(\frac{v}{c}\right)$ and also $\alpha_{2}=-2 \operatorname{iarctanh}\left(\frac{2 v}{c}\right)$.

Now using equation (6) we obtain:

$$
\begin{equation*}
\frac{2 i c^{2}}{g}\left(\operatorname{arctanh}\left(\frac{2 v}{c}\right)-\operatorname{arctanh}\left(\frac{v}{c}\right)\right)=i c \Delta \tau \Leftrightarrow \Delta \tau=\frac{2 c}{g}\left(\operatorname{arctanh}\left(\frac{2 v}{c}\right)-\operatorname{arctanh}\left(\frac{v}{c}\right)\right) \tag{9}
\end{equation*}
$$

Thus the final result is:

$$
\Delta \tau=\frac{2 c}{g}\left(\operatorname{arctanh}\left(\frac{2 v}{c}\right)-\operatorname{arctanh}\left(\frac{v}{c}\right)\right)
$$

