Problem 2

Elek Péter

We know the spaceship and the missiles $x(t)$.
$\mathrm{t}=0$ at $\mathrm{x}=0$ spacesip and missiles in the inertia system

1. Spaceship motion

$$
\begin{equation*}
x(t)=\frac{c^{2}}{g}\left(\sqrt{1+\frac{g^{2} t^{2}}{c^{2}}}-1\right) \tag{1}
\end{equation*}
$$

this is a hyperbola

$$
\begin{equation*}
\frac{g}{c^{2}} x^{2}+2 x-g t^{2}=0 \tag{2}
\end{equation*}
$$

and the metric

$$
\begin{equation*}
c^{2} d \tau^{2}=-d s^{2}=c^{2} d t^{2}-d x^{2} \tag{3}
\end{equation*}
$$

τ the spaceship own time use the first hit and $\mathrm{dx}_{0}=i c d t$ and the metric

$$
\begin{equation*}
-c^{2} d \tau^{2}=d s^{2}=d x_{0}^{2}+d x^{2} \tag{4}
\end{equation*}
$$

this is the Euklidesian metric and the motion is a circle

$$
\begin{equation*}
x^{2}+2 x \frac{c^{2}}{g}+x_{0}^{2}=0 \tag{5}
\end{equation*}
$$

The curve lenght square $-c \Delta \tau^{2}$

$$
\begin{equation*}
i c \Delta \tau=2 \alpha \frac{c^{2}}{g} \tag{6}
\end{equation*}
$$

2. Missles motion

the missles motion is a line $x_{1}=v t$ and $x_{2}=2 v t$

$$
\begin{align*}
& \tan \alpha_{1}=\frac{x_{0}}{x_{1}}=\frac{v}{i c} \tag{7}\\
& \tan \alpha_{2}=\frac{x_{0}}{x_{2}}=\frac{2 v}{i c} \tag{8}
\end{align*}
$$

and $\alpha=\alpha_{2}-\alpha_{1}$
use the hiperbolic functions

$$
\begin{equation*}
\alpha=i\left(\operatorname{arctanh} \frac{2 v}{c}-\operatorname{arctanh} \frac{v}{c}\right) \tag{9}
\end{equation*}
$$

3. The result

$$
\begin{align*}
i c \Delta \tau & =2 i\left(\operatorname{arctanh} \frac{2 v}{c}-\operatorname{arctanh} \frac{v}{c}\right) \frac{c^{2}}{g} \tag{10}\\
\Delta \tau & =2\left(\operatorname{arctanh} \frac{2 v}{c}-\operatorname{arctanh} \frac{v}{c}\right) \frac{c}{g} \tag{11}
\end{align*}
$$

Let's see the non relativistic situation if $\left|\frac{v}{c}\right| \ll 1$

$$
\begin{equation*}
\Delta \tau=2 \frac{v}{c} \frac{c}{g}=\frac{2 v}{g} \tag{12}
\end{equation*}
$$

this is the exact classical solutions

