
Physics Cup 2019, Problem 1 

In order to solve this problem, we will first solve an 

analog electromagnetic problem, and then, apply the 

necessary changes in order to obtain the result for the 

hydrodynamics problem. 

We start our analogy by realizing that in the 

hydrodynamics problem, we wish to solve the following 

equations for the velocity field of the liquid outside the 

contour of the object: 

𝛁 ∙ 𝑣⃗ = 0 

𝛁 × 𝑣⃗ = 0 

We notice that these equations are very similar to two of 

the Maxwell equations in a space with charge density 0: 

𝛁 ∙ 𝐸⃗⃗ = 0 

𝛁 × 𝐸⃗⃗ = 0 

We can, therefore, think of the object immerse in a 

liquid the same way as we think of a dielectric corpse 

immerse on an electric field. 

We will work on the object’s frame, and, therefore, will 

have to apply some corrections further down the 

resolution. 

As we have a physical boundary that prevents the water 

from entering the object, we can estipulate that our analog 

electromagnetic problem shall have a boundary condition 

for the electric field perpendicular to the surface of the 

object: 

𝐸𝑝 = 0 

Where 𝐸𝑝 denotes the electric field perpendicular to the 

surface at the boundary of the object. 

By using this boundary condition, we can arrive at the 

conclusion that the dielectrics constant of our analog 

dielectric object is 𝜖 = 0, since the perpendicular 

displacement vector 𝐷⃗⃗⃗ = 𝜖𝜖0𝐸⃗⃗ must be continuous on the 

boundary of the object, a dieletric constant equal to 0 

ensures that the perpendicular 𝐷⃗⃗⃗ is 0 inside the object, and 

thus, ensures that the perpendicular 𝐸⃗⃗ is 0 outside the 

object. 

𝜖 = 0 

To calculate the force acting on the object, we will 

integrate the force due to the different pressure of the 

liquid at different points. Using the unsteady Bernoulli 

equation (derivation in appendix 1), we are concerned 

only with the pressure difference relative to the unsteady 

character of the flow, (since neither of the other two terms 

involve the acceleration of the body and added mass is a 

phenomenon related to the acceleration): 

∆𝑃 = 𝜌
𝜕𝜑

𝜕𝑡
 

Where 𝜑 denotes the velocity potential, which is analog 

to the electric potential. 

We must integrate this pressure difference over the 

surface of our object that is perpendicular to 𝐸0⃗⃗⃗⃗⃗ to obtain 

the force acting on the 𝑥 direction. 

As the shape of the field lines (electric field lines which 

are analog to velocity field lines) does not change in time, 

we can think of our electric potential as a spatial function 

that does not vary in time, times 𝐸0⃗⃗⃗⃗⃗: 

𝜑(𝑥, 𝑦, 𝑧, 𝑡) = 𝐸0(𝑡) ∗ 𝛿(𝑥, 𝑦, 𝑧) 

The rate of change of the function 𝜑 with respect to time 

is: 

𝜕𝜑

𝜕𝑡
=
𝑑𝐸0
𝑑𝑡

∗  𝛿(𝑥, 𝑦, 𝑧) 

Hence, we can write: 

𝜕𝜑

𝜕𝑡
=

𝑑𝐸0
𝑑𝑡

∗ 𝜑

𝐸0
 

The force is obtained by integrating ∆𝑃 across the surface 

perpendicular to 𝐸0⃗⃗⃗⃗⃗: 

𝐹 = 𝜌

𝑑𝐸0
𝑑𝑡
𝐸0

∬𝜑 ∗ 𝑑𝑆𝑝
𝑆𝑝

 

Here, 𝑆𝑝 denotes the surface of the object that is 

perpendicular to 𝐸0⃗⃗⃗⃗⃗. 

As we don’t know neither the shape of our object nor the 

potential function, we will have to use an unusual 

procedure in order to calculate the integral above. We will 

take advantage of the fact that the electric field inside the 

dielectric is uniform. 

Let our object be of a generic shape. We can draw the field 

lines on the interior and exterior as follows: 



 

We can divide our object in small columns as shown: 

 

We can then write: 

𝑑𝐹 = 𝜌

𝑑𝐸0
𝑑𝑡
𝐸0

∗ (𝜑(𝑝𝑜𝑖𝑛𝑡 1) − 𝜑(𝑝𝑜𝑖𝑛𝑡 2))𝑑𝑆𝑥 

Hence: 

𝑑𝐹 = 𝜌

𝑑𝐸0
𝑑𝑡
𝐸0

∆𝜑12𝑑𝑆𝑥 

As the electric field inside the object is uniform, we can 

write the potential difference between points 1 and 2 as a 

function of the electric field inside the dielectric, 

however, we notice that we have to apply a correction due 

to the fact that we are not in the reference frame in which 

the water is not moving far from the object: 

∆𝜑12 = 𝑧(𝐸𝑖𝑛 − 𝐸0) 

Where 𝐸𝑖𝑛 denotes the electric field inside the object, and 

the term 𝐸0 represents the correction that was mentioned, 

which is “simulated” by adding an electric field 𝐸0 at all 

points, “emulating” the effect of the change of reference 

frame. 

Substituting this value of ∆𝜑 into the equation for 𝑑𝐹, we 

obtain: 

𝑑𝐹 = 𝜌

𝑑𝐸0
𝑑𝑡
𝐸0

(𝐸𝑖𝑛 − 𝐸0)𝑧𝑑𝑆𝑥 

We notice that 𝑧𝑑𝑆𝑥 denotes an infinitesimal element of 

volume, and, therefore: 

𝑑𝐹 = 𝜌

𝑑𝐸0
𝑑𝑡
𝐸0

(𝐸𝑖𝑛 − 𝐸0)𝑑𝑉 

𝐹 = ∫𝜌

𝑑𝐸0
𝑑𝑡
𝐸0

(𝐸𝑖𝑛 − 𝐸0)𝑑𝑉 = 𝜌

𝑑𝐸0
𝑑𝑡
𝐸0

(𝐸𝑖𝑛 − 𝐸0)𝑉 

Now, we have to determine 𝐸𝑖𝑛 in order to obtain the 

force. 

First, we can write the following equation relating the 

polarization, volume and polarizability of our object: 

𝑃⃗⃗𝑉 = 𝛼𝐸0⃗⃗⃗⃗⃗ 

This relation arises from the fact that we can think of the 

polarized object as a similar object made of positive 

charges slightly dislocated from another object made of 

negative charges. This charge distribution is seen a simple 

electric dipole, when observed from a far enough point. 

Writing the polarization in terms of the internal electric 

field: 

𝐸𝑖𝑛(𝜖 − 1)𝜖0𝑉 = 𝛼𝜖𝐸0 

𝐸𝑖𝑛 =
𝛼𝜖𝐸0

(𝜖 − 1)𝜖0𝑉
 

Here, 𝛼𝜖 denotes the polarization as a function of the 

dielectric constant 𝜖. 

As was already explained, we in our analog problem, we 

take the dielectric constant to be 0, therefore, the internal 

field is: 

𝐸𝑖𝑛 =
𝛼0𝐸0

(𝜖 − 1)𝜖0𝑉
 



Substituting the expression for 𝐸𝑖𝑛 into the force equation 

yields: 

𝐹 = 𝜌

𝑑𝐸0
𝑑𝑡
𝐸0

(
𝛼0𝐸0

(𝜖 − 1)𝜖0𝑉
− 𝐸0)𝑉 

𝐹 = 𝜌
𝑑𝐸0
𝑑𝑡
(

𝛼0
(𝜖 − 1)𝜖0𝑉

− 1)𝑉 

However, we have a problem because the problem 

statement only gives us the polarizability of a metal object 

(we assume the dielectric constant of the metal to be 𝜖 =

∞), whereas we need the polarizability of an object of the 

same shape, but with 𝜖 = 0. We have to find a way to 

obtain the polarizability of an object of the same shape as 

the metal one, as a function of the polarizability of the 

metal object. 

To do this, we can start by start by writing down a 

relationship between the internal electric field caused by 

the polarized object, and the polarization of the object as: 

𝐸𝑖𝑛′ = −
𝑃

𝐶𝜖0
 

Here, 𝐸𝑖𝑛′ denotes the internal electric field generated by 

the polarized object and 𝐶 is a constant related to the 

shape of the object. 

We can write this because, as the total electric field inside 

the object is uniform, we can conclude that the internal 

electrical field caused by the polarized object is also 

uniform, since the total internal electric field is obtained 

as the superposition of 𝐸0 and 𝐸𝑖𝑛′. 

Using 𝑃 = (𝜖 − 1)𝜖0𝐸𝑖𝑛 , we can write: 

𝐸𝑖𝑛 = 𝐸0 + 𝐸𝑖𝑛
′ = 𝐸0 −

(𝜖 − 1)𝐸𝑖𝑛
𝐶

 

Hence: 

𝐸𝑖𝑛 =
𝐶𝐸0

(𝐶 − 1) + 𝜖
 

The polarization is: 

𝑃 =
𝐶𝐸0(𝜖 − 1)𝜖0
(𝐶 − 1) + 𝜖

 

Using 𝑃⃗⃗𝑉 = 𝛼𝐸0⃗⃗⃗⃗⃗ once more, we obtain the polarizability 

as: 

𝛼𝜖 = 𝐶𝜖0𝑉 (
𝜖 − 1

(𝐶 − 1) + 𝜖
) 

Now, we notice that as the value of 𝜖 approaches infinity, 

the expression for 𝛼𝜖 reduces to: 

𝛼∞ ≈ 𝐶𝜖0𝑉 

Hence, the 𝐶 constant is given by: 

𝐶 =
𝛼∞
𝜖0𝑉

 

Substituting this value of 𝐶 into the expression for 𝛼𝜖: 

𝛼𝜖 =
𝛼∞
𝜖0𝑉

𝜖0𝑉(
𝜖 − 1

(
𝛼∞
𝜖0𝑉

− 1) + 𝜖
) 

Hence, 𝛼0 is: 

𝛼0 = 𝛼∞(
−1

(
𝛼∞
𝜖0𝑉

− 1)
) 

Finally, inserting this value of 𝛼0 into the expression for 

𝐹 and setting 𝜖 = 0, we obtain: 

𝐹 = 𝜌
𝑑𝐸0
𝑑𝑡

(

 
 
 
 𝛼∞(

−1

(
𝛼∞
𝜖0𝑉

− 1)
)𝛼0

(−1)𝜖0𝑉
− 1

)

 
 
 
 

𝑉 

 

𝐹 =  𝜌
𝑑𝐸0
𝑑𝑡
(

𝛼∞
𝛼∞ − 𝜖0𝑉

− 1)𝑉 

Changing 
𝑑𝐸0

𝑑𝑡
⟶

𝑑𝑣

𝑑𝑡
 (after completing the analog 

problem, we have to substitute back 𝑣 instead of 𝐸), we 

obtain the added mass as: 

𝑚+ =
𝐹

𝑑𝑣
𝑑𝑡

=  𝜌 (
𝛼∞

𝛼∞ − 𝜖0𝑉
− 1)𝑉 

Appendix 1: derivation of unsteady Bernoulli equation 

Refference: 
http://web.mit.edu/2.016/www/handouts/Unsteady_Bern

oulli%27s_Derivation_050921.pdf  

We start with: 

𝐹⃗ = 𝑚𝑎⃗ 

Hence: 

𝜌𝑎⃗ = 𝜌
𝐷𝑣⃗

𝐷𝑡
 

We can write 
𝐷𝑣⃗⃗

𝐷𝑡
 as: 

http://web.mit.edu/2.016/www/handouts/Unsteady_Bernoulli%27s_Derivation_050921.pdf
http://web.mit.edu/2.016/www/handouts/Unsteady_Bernoulli%27s_Derivation_050921.pdf


𝐷𝑣⃗

𝐷𝑡
=
𝜕𝑣⃗

𝜕𝑡
+
𝜕𝑣⃗

𝜕𝑥
∗
𝜕𝑥

𝜕𝑡
+
𝜕𝑣⃗

𝜕𝑦
∗
𝜕𝑦

𝜕𝑡
+
𝜕𝑣⃗

𝜕𝑧
∗
𝜕𝑧

𝜕𝑡
 

𝐷𝑣⃗

𝐷𝑡
=
𝜕𝑣⃗

𝜕𝑡
+ ((

𝜕𝑥

𝜕𝑡
,
𝜕𝑦

𝜕𝑡
,
𝜕𝑧

𝜕𝑡
) ∙ (

𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧
)) 

As the flow is considered irrotational, we can define a 

velocity potential such that ∇𝜑 = 𝑣⃗. 

Writing 
𝐷𝑣⃗⃗

𝐷𝑡
 in terms of the velocity potential and equating 

it with the terms relative to the forces that act on the 

system, we are left with: 

𝜌(
𝜕∇𝜑

𝜕𝑡
+ ∇(

∇𝜑 ∙ ∇𝜑

2
)) = −∇𝑝 − 𝜌𝑔 

Hence: 

𝜌(
𝜕𝜑

𝜕𝑡
+ (
∇𝜑 ∙ ∇𝜑

2
)) + 𝑝 + 𝜌𝑔𝑧 = 𝐶 

 

 

 

 

 

 

 

 

 

 


