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Consider the velocity field ~v(~r, t) defined in the problem specifications at
time t=0 with ~v inside the object defined as the velocity of the object v0.
Since the following equations are true at any point in the vector field outside
the object
The liquid is incompressible:

∇ · ~v = 0 (1)

The liquid is vortex-free:
∇× ~v = 0 (2)

and since the component of the ~v-field on the surface of the object orthogonal
to the surface of the object is equal to the orthogonal component of the ob-
ject velocity (a boundary condition for the field that arises from the fact that
water cannot flow into the object) we can define an electric displacement field
~D =

√
ερ~v with zero bound free density at all points and ε = ε0 at any point

outside the object (we will find ε inside the object later). We also define a cor-

responding ~E-field as ~E =
~D
ε .

The reason we define ~D in this way is because the energy densities uv and
uD of the D and v fields are calculated by

uv =
1

2
ρ~v · ~v (3)

uD =
1

2ε
~D · ~D (4)

Thus by defining ~D in this way the energy in the v-field for some region of space
R will be the same as the energy in the D-field in the same region R
Inside the object we have ~Din = −D0x̂ and infinitely far away from the object
we have ~D∞

out = 0

We will now add a vector ~D′ = D′x̂ to the field at every point (this corre-
sponds to a change of inertial frame.
Thus:

Din = D′ −D0 (5)

D∞
out = D′ (6)

Because of the second condition in the problem statement this is equivalent to
placing a dielectric of some relative permiability εr in a homogeneous D-field of
value ~D = D′x̂. This fact can be proven through uniqueness of solution and the
fact that the dielectric in the homogeneous field satisfies the boundary condi-
tions of the D-field.

To calculate εr we consider the dipole moment density ~p of the dielectric in
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the field.
Per definition

p = (εr − 1)ε0Ein (7)

Where:
Ein is the strength of the homogeneous E-field inside the dipole.
Additionally a metallic object of the same shape as the dielectric has

p =
α

V
∆E (8)

Where:
∆E is the change in strength of the electric field inside the field due to the
charge distribution on the metal surface.

Through uniqueness of solution we find that the dipole moment density of the
dielectric will have the same form

p =
α

V
(E′ − Ein) (9)

Furthermore we know that for any E-field

~E(~r) =
~D(~r)

ε0εr
(10)

Combining the results in equations 5, 7, 9, 10 we can derive

εr =
α
V − ε0

α
V D

′ − ε0Din
Din (11)

We can now derive a formula for the change of energy in the D-field outside the
object due to the dielectric. We have three energy changes to consider due to
the adding of the dielectric. ∆Uin, the change of energy of the field inside the
region covered by the dielectric, ∆Uout the change of energy of the field inside
the region not covered by the dielectric, and ∆Up, the change in potential energy
of the dipole or rather the change in potential energy due to the new charge
distribution inside the dipole. Due to conservation of energy we get

∆Uin + ∆Uout + ∆Up = 0 (12)

Since p ∝ D′

∆Up = − 1

2ε0
pD′V (13)

Furthermore ∆Uin i can be calculated by multiplying the volume of the object
with the energy density of the field in the object before and after adding the
dielectric.

∆Uin =
V

2ε0
(
D2
in

εr
−D′2) (14)
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Using equation 11 and 14 we can calculate ∆Uin to be

∆Uin = − V

2ε0( αV − ε0)
(ε0D

2
0 − (

α

V
+ 2ε0)D0D

′ − α

V
D′2) (15)

Finally we want to find ∆Uout when D′ = 0. Since D′ = 0 the change of energy
in the outside field will also be the total energy of the outside field. At D′ = 0,
∆Up and many terms in the expression for ∆Uin will be zero. Using equations
10, 12, 13, 15 we get:

Uout = ∆Uout =
V ε0D

2
0

2ε0( αV − ε0)
(16)

Using the definition of ~D, ~D =
√
ερ~v, we get

Ek = Uout =
V ρε0v

2
0

2( αV − ε0)
(17)

Thus, using the definition of added mass madd = 2Ek

v2 we can derive our final
result

madd =
ε0V ρ

( αV − ε0)
(18)
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