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As it has been mentioned in the problem, a body moving in liquid will cause the liquid to be moving
too. This increases the total kinetic energy of the system, and generally it will be difficult to be calculated
with the present of vortices and for arbitrary shape of the body. The problem, however, asked the added
mass for an object having special symmetry and at a time when vortices have not emerged.

Because initially there is no vortex, the velocity fulfills
∮
~v.d~r = 0. This has the same property as

electric field in electrostatic case. The kinetic energy density for liquid moving with velocity ~v is k = ρ
2v

2,
which also has a similarity with the energy density of electric field, u = ε

2E
2. Therefore, there is a

parallel relationship between the two vectors. We also need to realize that the polarizability is a constant
determined only by the geometrical shape of the body.
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Figure 1: Left figure shows the system at which the body is moving in the liquid with velocity ~w, while
the right figure shows the analogy of the system in electrostatic case. Note that the direction of ~E0

must be the opposite of ~w so that the induced electric field outside will have the same direction as the
movement of the liquid.

To solve the problem let us think the analogy of the system in electrostatic case. As initially the
liquid is not moving, we can assume an empty space with permeability ε0 for the analogy. When the
body starts to move, the liquid will start to move as well. The added kinetic energy of the system is
clearly, ∆K = ρ

2

∫
v2 dV , where ~v is the induced velocity of the liquid due to the movement of the body

and the integration is for volume outside the body. Suppose that the body is moving with velocity ~w to
the x-direction, then the velocity of the liquid perpendicular to the body must be ~w.n̂, where n̂ is the unit
vector pointing out of the body and perpendicular to its surface. This must be true because we assume
the liquid to be incompressible. Another thing which is important to be considered is that the liquid has
zero velocity far from the body, as the influence of the movement of the body is negligible there. Now,
let us consider a certain charge distribution such that there is uniform electric field ~E0 inside volume V
of the body. The total dipole moment is then ~p = −α~E0. The minus sign is because if we have a metallic
body with the same shape and we put it in a uniform external electric field ~E pointing to the x-axis, then
the electrons will move such that the induced electric field inside the body is − ~E, and the total electric
field becomes zero. Because of the symmetry of the shape of the body, we can also take it as there is
a uniform distribution of dipole moment throughout volume V , with dipole moment density −α~E0/V .

Therefore, the charge per unit area on the surface of the body is σ = − α
V
~E0.n̂ (we can think it as if the

body is made of uniform dielectric material and there is uniform polarization, this is possible because
the symmetry of the body). The perpendicular component of the electric field just outside the body can

be easily obtained using Gauss’ Law. The perpendicular field inside the body is ~E0.n̂, so using Gauss’
Law, the perpendicular field outside the body is E⊥ = ~E0.n̂+ σ/ε0 = ~E0.n̂ (1− α/ε0V ). We can see now

that both systems have similarities. The two vectors ( ~E and ~v) go to zero far from the body and also are
described by the same equations (the line integration through a closed loop outside the body is zero and
there is no source, except of course at the boundary where the liquid is force to move). The velocity of

the body, ~w, is evidently analog to (1− α
ε0V

) ~E0, because these two give the same perpendicular field.
To calculate the energy of the moving liquid, we can exploit the analog of the two systems. For the

electric system, the total energy can be calculated this way: the interaction energy of an infinitesimal
dipole moment due to the electric field of the others is dU = − ~E0.

~p
V dV . Integrating this equation, we
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can easily obtain − ~E0.~p, but this counts the interaction energy of each infinitesimal dipole pair twice, so
the total energy must be U = − 1

2
~E0.~p = α

2E
2
0 . When we think of the electric field, this energy comes

from 2 contributions, the first contribution is from the uniform electric field inside volume V and the
second contribution is from the electric field outside. So, we have

α

2
E2

0 =
ε0
2
E2

0V +
ε0
2

∫
E2 dV

The energy of the moving liquid can then be calculated using the analog between ~w and (1− α
ε0V

) ~E0

∆K =
ρ

2

∫
v2 dV =

ρ

2

w2

(1− α
ε0V

)2E2
0

∫
E2 dV

Substituting the value one will get

∆K =
w2

2

ρV

( α
ε0V
− 1)

Finally, we can clearly see that the added mass is Madded = ρV/(α/ε0V − 1).

Another method

There is another slightly different way to obtain the added mass. We know that the total kinetic
energy of the system can be written as K = 1

2 (Mbody + Madded)w
2. The system can be seen, then,

as having an effective mass of Mbody + Madded. This means that the momentum of the system at the
moment when the body starts to move is ~p = (Mbody + Madded)~w. Instead of looking for the energy we
can, therefore calculate the momentum of the liquid and determine the added mass from this result.
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Figure 2: The dotted line is the integration path of the amperian loop. This amperian loop can also
be thought as a rectangular loop, but the other 3 sides are very far away thus the contribution of the
velocity is effectively zero.

First, let us consider an amperian loop in the shape of an infinitely long straight line parallel to x-axis.
If this line does not go through the body (see Figure 2 left), then the integration of vx along this line
must be zero, because

∮
~v. d~r = 0. The net momentum inside this part of the liquid is consequently also

zero. Now, we use the analogy of the system in electrostatic case. For the line which goes through the
body we have,

∫
Ex dx − E0l =

∮
~E. d~r = 0, where l is the length of the line which is inside the body

(See Figure 2 right). Thus, we can see that
∫
Ex dV = E0V . Using this result and the fact that ~w is

analogous to (1− α
ε0V

) ~E0, we can calculate the total momentum of the liquid∫
vx dV =

w

( α
ε0V
− 1)E0

∫
Ex dV =

w

( α
ε0V
− 1)

V

In deriving the last equation we need to realize that in order to have the correct direction of the velocity
we must have ~E0 pointing to the opposite direction of ~w, so w (the magnitude of ~w) is analogous to
( α
ε0V
− 1)E0. Finally, the total momentum of the liquid is

padded = ρ

∫
vx dV = ρ

V

( α
ε0V
− 1)

w

and the added mass is Madded = ρV/(α/ε0V − 1).
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