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Problem 2 

Scheme of the engine and description 

By the text of the question, we were told that our system consists 

of two masses 𝑚 of water and ice. We separate small piece of ice 

of mass 𝑚2 =
𝑚
𝑛⁄ , and try to cool it as much as we can with our 

system. All quantities, which are connected to this small piece of 

ice we denote by sub-index 2. All quantities, which are connected 

to another piece of ice of mass 𝑚1 = 𝑚 −𝑚2we denote by sub-

index 1. All quantities, which are connected to water, we denote 

with no special index. 

So, to additionally cool the ice of mass 𝑚2 amount of work under 

one of the engines, which may be used as cooler, must be done. We 

can obtain this energy only as a work of another heat engine, which 

may be used as an “heater”. In order to set to work heater engine, 

we have to connect it to masses of water and ice. By considering all 

that was mentioned above, we can conclude, that only two schemes 

of such engine exist and they are shown on Fig. 1 and Fig. 2. 

Difference between them consists in “heater” source, which is used 

by each scheme. Heat flows are shown by arrows. In an appendix 

to the solution, we show that both two cases are equivalent and 

give the same answer by considering Carnot cycles in each. 

In the main part of 

the solution, we consider the essential equations, initial and final 

conditions that lead to an answer without consideration of the 

exact scheme of heat machine. 

Initial and final conditions. 

Let us consider the initial conditions and possible states of the 

system when it reaches the thermodynamic equilibrium state. 

Obviously, the entire system stops if the temperature of the water 

mass is equal to the temperature of the ice mass, which we use as 

a cooler in the first stage cycle. Water loses energy when first 

stage system works. Water freezes and becomes ice because it 

was initially on the melting point 𝑇0. As a result, we can strictly 

bound amount of water, which turns into ice after all process has 

been done. We were told from the text of the problem that 

𝑡 ~ few Kelvines, so let’s consider 𝑡 < 10 𝐾. Energy, which is 

obtained from freezing part of water is 

∆�̃� = ∆𝑚𝜆, 

and energy, that is demanded to heat ice up from 𝑇0 − 𝑡 to 𝑇0 can 

be bounded from above as (
𝜕𝑐𝑉

𝜕𝑇
= 𝛼 > 0) 
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∆�̃�′ ≈ 𝑚 𝑐𝑉(𝑇0)𝑡 = 𝑚𝛼𝑇0𝑡. 

From this we can estimate the part of frozen water: 

∆�̃�′ ≈ ∆�̃� 

∆𝑚

𝑚
=
𝛼𝑇0𝑡

𝜆
~10−2 ≪ 1. 

Now it is clear that only a small amount of water freezes in a thermodynamic process. Thermodynamic 

equilibrium is reached when the mass of ice is heated to the melting point and part of the water freezes. 

Essential equations 

For the solution of the problem, we may need two thermodynamic equations. 

Our thermodynamic system consists of ice, water, and ideal reversible heat engines. From this, we can conclude, 

that system is conservative (inner energy of the system conserves) and reversible (entropy of the system 

conserves). 

The energy conservation law: 

𝑑𝑈1 + 𝑑𝑈2 + 𝑑𝑈 = 0. 

The entropy conservation law (components of the system, except heat engines with neglectable heat capacity, 

don’t do any work, so 𝛿𝑄 = 𝑑𝑈 for all of the mentioned components): 

𝑑𝑈1
𝑇1

+
𝑑𝑈2
𝑇2

+
𝑑𝑈

𝑇
= 0. 

Inner energy 

As water loses energy and freezes, we can express a small amount of energy, that is loosed by water, as 

𝑑𝑈 = −𝜆 𝑑𝑚, 

where 𝑑𝑚 is a mass of the small amount of frozen water. 

Energy variation of ice can be written as next (suggested model): 

𝑑𝑈1 = 𝑚1𝑐𝑉(𝑇1) 𝑑𝑇1 = 𝑚1𝛼 𝑇1𝑑𝑇1. 

Identically: 

𝑑𝑈2 = 𝑚2𝑐𝑉(𝑇2) 𝑑𝑇2 = 𝑚2𝛼 𝑇2𝑑𝑇2. 

Final system of equations 

As a result, we obtain a system of equations: 

{

𝑚1𝛼 𝑇1𝑑𝑇1 +𝑚2𝛼 𝑇2𝑑𝑇2 − 𝜆 𝑑𝑚 = 0

𝑚1𝛼 𝑑𝑇1 +𝑚2𝛼 𝑑𝑇2 − 𝜆 
𝑑𝑚

𝑇
= 0

 

We can integrate each equation separately and take into account that initial temperatures are 



𝑇1
(𝑖𝑛) = 𝑇2

(𝑖𝑛) = 𝑇0 − 𝑡,    𝑇
(𝑖𝑛) = 𝑇0, 

the final temperatures are 

𝑇1
(𝑓𝑖𝑛)

= 𝑇0, 𝑇2
(𝑓𝑖𝑛)

= 𝑇𝑚𝑖𝑛,    𝑇
(𝑓𝑖𝑛) = 𝑇0, 

the temperature of the water 𝑇 remains constant in process of all heat machine work (water just freezes). ∆𝑚 is a 

mass of all frozen water that was initially liquid. 

{
𝑚1𝛼(2𝑇0𝑡 − 𝑡

2) + 𝑚2𝛼(𝑇𝑚𝑖𝑛
2 − (𝑇0 − 𝑡)

2) − 2𝜆 ∆𝑚 = 0

𝑚1𝛼𝑇0𝑡 + 𝑚2𝛼(𝑇𝑚𝑖𝑛 − 𝑇0 + 𝑡)𝑇0 − 𝜆 ∆𝑚 = 0
 

By multiplying by 2 the second equation, subtracting it from the first and canceling out similar expressions, we 

obtain 

−𝑚1𝑡
2 +𝑚2(𝑇𝑚𝑖𝑛

2 − 2𝑇𝑚𝑖𝑛𝑇0 + 𝑇0
2 − 𝑡2) = 0. 

Now let us use our notation for  𝑚2 =
𝑚
𝑛⁄  and 𝑚1 = 𝑚 −𝑚2. By substituting, we obtain a quadratic equation 

𝑇𝑚𝑖𝑛
2 − 2𝑇𝑚𝑖𝑛𝑇0 + 𝑇0

2 − 𝑛 𝑡2 = 0. 

The equation can be solved in a next way: 

(𝑇𝑚𝑖𝑛 − 𝑇0)
2 = 𝑛 𝑡2   →   𝑇𝑚𝑖𝑛 = 𝑇0 ± 𝑡√𝑛. 

We chose a negative sign because the final temperature 𝑇𝑚𝑖𝑛 should not be higher than initial temperature. 

Answer: 𝑇𝑚𝑖𝑛 = 𝑇0 − 𝑡√𝑛 

 

Appendix 

Ideal work of the reversible heat engine can be modeled as an infinite sequence of infinitesimal Carnot cycles. 

Let’s check for both cases that equations are the same. We consider the small period of time and temperatures 

change for a negligibly small amount. 

The case on the Fig. 1 

Water gives 𝛿𝑄𝐻1 to the first stage of the engine, a big part of ice receives 𝛿𝑄𝐶1, for other cycle transfers 𝛿𝐴.  

From the energy conversation law, we can obtain: 𝛿𝑄𝐻1 − 𝛿𝑄𝐶1 −  𝛿𝐴 = 0 

For the Carnot cycle: 
𝛿𝑄𝐻1

𝛿𝑄𝐶1
=

𝑇

𝑇1
. 

The second cycle receives energy and cools a small piece of ice. Now the small piece of ice gives 𝛿𝑄𝐶2 and 

water receives 𝛿𝑄𝐻2. For this, we use the 𝛿𝐴 amount of energy. 

From the energy conversation law, we can obtain: 𝛿𝑄𝐻2 − 𝛿𝑄𝐶2 −  𝛿𝐴 = 0 

For the Carnot cycle: 
𝛿𝑄𝐻2

𝛿𝑄𝐶2
=

𝑇

𝑇2
. 

From these equations we can obtain: 



{
 
 

 
 
𝛿𝑄𝐻1 − 𝛿𝑄𝐶1 − 𝛿𝑄𝐻2 + 𝛿𝑄𝐶2 = 0

𝛿𝑄𝐻1 =
𝑇

𝑇1
𝛿𝑄𝐶1

𝛿𝑄𝐻2 =
𝑇

𝑇2
𝛿𝑄𝐶2

 

If we change variables to 𝛿𝑄, 𝛿𝑄1 and 𝛿𝑄2, where 𝛿𝑄 = 𝛿𝑄𝐻1 − 𝛿𝑄𝐻2, 𝛿𝑄1 = −𝛿𝑄𝐶1, 𝛿𝑄2 = 𝛿𝑄𝐶2 (these 

variables mean how much energy each part of our system give), we can obtain: 

{

𝛿𝑄 + 𝛿𝑄1 + 𝛿𝑄2 = 0

𝛿𝑄 = −
𝑇

𝑇1
𝛿𝑄1 −

𝑇

𝑇2
𝛿𝑄2

 

{

𝛿𝑄 + 𝛿𝑄1 + 𝛿𝑄2 = 0
𝛿𝑄

𝑇
+
𝛿𝑄2
𝑇2

+
𝛿𝑄1
𝑇1

= 0
 

This set of the equations is the same as one that we used for the solution of the problem, if we take into account 

that 𝛿𝑄 = 𝑑𝑈, 𝛿𝑄1 = 𝑑𝑈1, 𝛿𝑄2 = 𝑑𝑈2. 

The case on the Fig. 2 

Water gives 𝛿𝑄𝐻1 to the first stage of the engine, the big part of ice receives 𝛿𝑄𝐶1, for other cycle transfers 𝛿𝐴.  

The energy conversation law implies: 𝛿𝑄𝐻1 − 𝛿𝑄𝐶1 −  𝛿𝐴 = 0. For the Carnot cycle: 
𝛿𝑄𝐻1

𝛿𝑄𝐶1
=

𝑇

𝑇1
. 

The second cycle receives energy and cools a small piece of ice. The small piece of ice gives 𝛿𝑄𝐶2 and big piece 

receives 𝛿𝑄𝐻2. For this cycle, we use the 𝛿𝐴 amount of energy. 

From the energy conversation law, we can obtain: 𝛿𝑄𝐻2 − 𝛿𝑄𝐶2 −  𝛿𝐴 = 0 

For the Carnot cycle: 
𝛿𝑄𝐻2

𝛿𝑄𝐶2
=

𝑇1

𝑇2
. 

From these equations we can obtain: 

{
 
 

 
 
𝛿𝑄𝐻1 − 𝛿𝑄𝐶1 − 𝛿𝑄𝐻2 + 𝛿𝑄𝐶2 = 0

𝛿𝑄𝐶1 =
𝑇1
𝑇
𝛿𝑄𝐻1

𝛿𝑄𝐻2 =
𝑇1
𝑇2
𝛿𝑄𝐶2

 

If we change variables to 𝛿𝑄, 𝛿𝑄1 and 𝛿𝑄2, where 𝛿𝑄 = 𝛿𝑄𝐻1, 𝛿𝑄1 = −𝛿𝑄𝐶1 − 𝛿𝑄𝐻2, 𝛿𝑄2 = 𝛿𝑄𝐶2 (these 

variables mean how much energy each part of our system give), we can obtain: 

{

𝛿𝑄 + 𝛿𝑄1 + 𝛿𝑄2 = 0

−𝛿𝑄1 =
𝑇1
𝑇
𝛿𝑄 +

𝑇1
𝑇2
𝛿𝑄2

 

And finally: 

{

𝛿𝑄 + 𝛿𝑄1 + 𝛿𝑄2 = 0
𝛿𝑄

𝑇
+
𝛿𝑄2
𝑇2

+
𝛿𝑄1
𝑇1

= 0
 



This set of the equations is the same as in the previous case and in the entropy approach. We just show that two 

mentioned cases are equivalent. Moreover, we can conclude, that we can apply particularly these two cases in 

every order and we obtain the same final result. 

 


