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1. Electrostatics and hydrodynamics analogy 

Calculation of velocity vector field is complicated and requires solution of Laplace differential equation 

for potential stream. But we can use analogy between electrostatics and hydrodynamics. Let’s consider 

Gauss theorem in differential form for electric field and charge density for metal polarized body: 

(∇ ∙ �⃗� ) =
𝜌𝑒

휀0
, 

 where �⃗�  is electric field, 𝜌𝑒 is charge density and 휀0 is vacuum permittivity. 

Volume around the body contains no charges, so 𝜌 = 0 and our equation is: 

(∇ ∙ �⃗� ) = 0. 

If we consider the steady and laminar flow of incompressible liquid, we 

can apply the continuity equation of fluid flow 

𝜕𝜌

𝜕𝑡
+ (∇ ∙ (𝜌𝑣 )) = 0. 

For incompressible liquid 𝜌 = const and for steady current 
𝜕𝜌

𝜕𝑡
= 0, as 

a result, we obtain 

(∇ ∙ 𝑣 ) = 0, 

where 𝑣  is a velocity vector field. As we can see, velocity field and 

electric field satisfy the same equation. So, if boundary conditions are 

proportional in every point, solutions of the equations are proportional 

in every point (linearity) and we can find coefficient 𝛾 and equation 

𝛾�⃗� = 𝑣  satisfies in every point of space.  

As we interested in kinetic energy of the liquid flow, it is convenient to denote 𝛾 as a coefficient that 

satisfy condition of equality of densities of kinetic energy of the flow (𝑤𝑘) and electrostatic field (𝑤𝑒): 

𝑤𝑘 = 𝑤𝑒 , 

where 𝑤𝑘 = 𝜌
𝑣2

2
 and 𝑤𝑒 = 휀0

𝐸2

2
. From equality, which is mentioned above, we can obtain 𝛾 by 

substitution of 𝑤𝑘 and 𝑤𝑒 and 𝛾 = √
𝜀0

𝜌
. 

2. Fluid flow near the surface 

Streamlines of liquid are shown on the Figure 1 in body 

reference frame. Let’s consider liquid flow near the body 

surface in the liquid reference frame (reference frame, where 

liquid is in rest at infinitely far point from the body). Let’s 

denote the velocity of body in this reference frame as �⃗�  (Fig. 

2). Liquid mustn’t cross the surface, so, relative to the body, 

velocity of the liquid must be parallel to the surface of the 
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body. Let’s mark velocity of the liquid near the surface at some point as 𝑣  (Fig. 2). Consequently, relative 

velocity is 𝑣 − �⃗� . Let’s denote normal vector to the surface at some point. So, if liquid flows parallel to 

the surface of the body, it is perpendicular to the normal vector and velocity of the liquid must satisfy 

�⃗� ∙ (𝑣 − �⃗� ) = 0. 

(�⃗� ∙ 𝑣 ) = (�⃗� ∙ �⃗� ) = 𝑢 cos𝛼. 

3. Electric field near the surface 

Now let’s consider electric field that is created by our concrete 

body, when it is made  of metal and put in homogeneous electric 

field �⃗� 0. Right near the surface of the metal body electric field 

must be perpendicular to the surface of the body due to metal’s 

equipotential surface (Fig. 3). Let’s denote resulting field near 

the surface as �⃗� 𝑛, external homogeneous field is �⃗� 0 and electric 

field, which is created by induced charges on the surface of the 

metal body, is �⃗� 𝑏 (Fig. 4).  

�⃗� 𝑛 = �⃗� 0 + �⃗� 𝑏 . 

Electrostatic induction on our particular homogeneous dielectric 

can be described with the model of two copies of body with 

constant charge density and oppositely charged, which are 

infinitesimally shifted relatively to each other. But, we know, if 

our shape is made of the dielectric material, then its polarization satisfies the special condition. Electric 

field in space, where two copies cross each other, is homogeneous. That means, that we can create a 

homogeneous field of strength −�⃗� 0 inside our body. And 

if we add homogeneous external field �⃗� 0 to this 

configuration, electric field in shape will vanish. That 

means, that model of two homogeneously charged bodies 

that infinitesimally shifted can give us solution for the 

same metal shape. Let’s denote module homogeneous 

charge density of the bodies as 𝜌𝑒 and shift as 𝑙. When 𝑙 

is much smaller than size of the body, we can describe 

charges, which aren’t neutralized, as a surface charge 

density of body. Let’s denote a thickness of charged 

layer as ℎ. So, surface density 𝜎 is 

𝜎 = 𝜌𝑒ℎ. 

From geometric relation (Fig. 4) ℎ = 𝑙 cos𝛼, as a result we can rewrite as 𝜎 = 𝜌𝑒𝑙 cos𝛼. 

Obviosly, �⃗� 𝑛 and �⃗� 𝑏 are dependent on the point on the surface, but some relations with liquid flow near 

the surface. Let’s take dot product of both sides of the equality and �⃗� : 

(�⃗� ∙ �⃗� 𝑛) = (�⃗� ∙ (�⃗� 0 + �⃗� 𝑏)) = (�⃗� ∙ �⃗� 0) + (�⃗� ∙ �⃗� 𝑏) 

�⃗� 𝑛 || �⃗�  and |�⃗� | = 1 we obtain (�⃗� ∙ �⃗� 𝑛) = 𝐸𝑛, (�⃗� ∙ �⃗� 0) = 𝐸0 cos𝛼 (Fig. 4). We can extract boundary 

conditions for �⃗� 𝑏: 
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(�⃗� ∙ �⃗� 𝑏) = 𝐸𝑛 − 𝐸0 cos 𝛼. 

We can find 𝐸𝑛 from the Gauss theorem in integral form. On the big scale our shape can be considered as 

a flat surface near the point, where we will apply Gauss theorem. So, let’s take a small cylinder, which 

base is parallel to the surface, charged layer crosses the cylinder. Flux through the lateral surface is 

absent, because field is perpendicular to the surface of the body. Flux through the inner for body base is 

zero too, because there is no field in metal shape. So, there is the flux only through the outer for body 

surface. 𝑆 – surface of the base of cylinder. By the Gauss theorem: 

𝑆𝐸𝑛 =
𝜎𝑆

휀0
, 

where 𝑆𝐸𝑛 – flux through the cylinder, 𝜎𝑆 – charge that covered by the cylinder. 

𝐸𝑛 =
𝜎

휀0
=

𝜌𝑒𝑙 cos 𝛼

휀0
. 

Now let’s define 𝜌𝑒 and 𝑙 through 𝑉 (volume) and 𝛼 (polarizability). As it was proven above, our 

polarized metal figure can be considered as two charged copies of body. We can consider this charge 

system as single dipole with the moment 𝑝 = 𝑙𝜌𝑒𝑉. According to formal definition of dipole moment of 

the system of charges, after volume integration of dipole moment, we obtain that dipole moment is just 

equivalent to shift of one of all body. On the other hand 𝑝 = 𝛼𝐸0. As a result, we obtain 

𝛼𝐸0 = 𝑙𝜌𝑒𝑉  →   𝑙𝜌𝑒 =
𝛼𝐸0

𝑉
. 

As a result, we can, finally, relate (�⃗� ∙ �⃗� 𝑏) and 𝐸0: 

(�⃗� ∙ �⃗� 𝑏) = (
𝛼

𝑉휀0
− 1)𝐸0 cos𝛼. 

As we can see, (�⃗� ∙ �⃗� 𝑏) is proportional to electric field 𝐸0 and cos 𝛼. In the same way (�⃗� ∙ 𝑣 ) is 

proportional to 𝑢 and cos 𝛼. 

(�⃗� ∙ 𝑣 ) = 𝑢 cos𝛼. 

So, boundary conditions are equivalent and differ on the dimension factor. As a result, we can state that 

𝛾�⃗� = 𝑣  in every point of space and 𝛾 = √
𝜀0

𝜌
. 

From all mentioned above: 𝛾�⃗� 𝑏 = 𝑣 , consequently 

(
𝛼

𝑉휀0
− 1)𝐸0 cos 𝛼 = (�⃗� ∙ �⃗� 𝑏) =

1

𝛾
(�⃗� ∙ 𝑣 ) =

1

𝛾
𝑢 cos 𝛼, 

(
𝐸0

𝑢
)
2

=
𝜌휀0𝑉

2

(𝛼 − 𝑉휀0)
2
. 

As we chose 𝛾 earlier, it is obvious that kinetic energy of water is equal to energy of outer electric field of 

our dipole. To find it we can firstly evaluate full dipole energy and then subtract inner energy.  

4. Energy of the dipole and flow 



To find full energy, let’s evaluate full work, which we need to create this dipole with its electric field. 

Elementary work is equal 

𝛿𝐴 = 𝐹 ∙ 𝑑𝑥 = 𝐸𝑞 ∙ 𝑑𝑥 = 𝑑𝑝 ∙ 𝐸, 

𝐸 – electric field, which corresponds to present 𝑝. 

𝑝 = 𝛼 ∙ 𝐸  →  𝑑𝑝 = 𝛼 ∙ 𝑑𝐸. 

After integration we obtain: 

𝐴 =
𝛼

2
𝐸0

2. 

Next step is evaluating inner energy. If in homogeneous field 𝐸0 in metal body field is zero, without 

external field, inner will be equal −𝐸0. Therefore 𝑊𝑖𝑛 =
𝜀0𝐸0

2

2
𝑉 (density of energy multiple its volume). 

Thus  

𝑊𝑜𝑢𝑡 = 𝐴 − 𝑊𝑖𝑛 =
𝛼

2
𝐸0

2 −
휀0𝐸0

2

2
𝑉 =

𝐸0
2

2
(𝛼 − 휀0𝑉). 

This expression should be equal 𝐾, kinetic energy of water. By definition 𝐾 =
∆𝑚𝑢2

2
. Consequently, 

∆𝑚𝑢2

2
=

𝐸0
2

2
(𝛼 − 휀0𝑉), 

∆𝑚 =
𝐸0

2

𝑢2
(𝛼 − 휀0𝑉). 

Earlier we have obtained value of 
𝐸0

2

𝑢2
=

𝜌𝑉2휀0

(𝛼−𝑉휀0)
2. Thus ∆𝑚 = 𝜌𝑉

𝑉𝜀0

𝛼−𝑉𝜀0
. 

Answer: 

∆𝑚 = 𝜌𝑉
𝑉휀0

𝛼 − 𝑉휀0
, 

where 휀0 is vacuum permittivity. 


