Problem 4 - Physics Cup 2019

Felix Bekir Chrisensen

1 Potential Difference Formula

Define the points on the grid $A=(0,0), B=(1,1), C=(n, n), D=(n+1, n+1)$ where $n>1$. Now let a current I flow from A to B. This current leads to a potential difference $U_{C D} \equiv U_{C}-U_{D}$ between C and D. Let us calculate this potential difference: The current from A to B can be represented as a superposition of a current I from A to infinity and a current $-I$ from B to infinity. Let the potential at A be equal to 0 . If there is a current I into A and a current $-I$ into C, the potential at C is by Ohm's law $U_{C}=I R_{n n}$. By translational symmetry of the set up, both currents contribute equally to this, so a single current I into A leads to $U_{C}=\frac{I}{2} R_{n n}$. The resistance between A and B is R_{11} and that between B and C is $R_{n-1 n-1}$ so by similar reasoning a current $-I$ into B leads to $U_{B}=-U_{A B}=\frac{I}{2} R_{11}$ and $U_{C B}=-\frac{I}{2} R_{n-1 n-1}$ implying $U_{C}=U_{B}+U_{C B}=\frac{I}{2}\left(R_{11}-R_{n-1 n-1}\right)$. Combining these results gives for the current distribution described above:

$$
\begin{align*}
U_{C} & =\frac{I}{2}\left(R_{n n}-R_{n-1 n-1}+R_{11}\right) \\
& =\frac{I \sqrt{R r}}{\pi}\left(\sum_{1}^{n} \frac{1}{2 k-1}-\sum_{1}^{n-1} \frac{1}{2 k-1}+1\right) \\
& =\frac{I \sqrt{R r}}{\pi}\left(\frac{1}{2 n-1}+1\right) \\
& =\frac{I \sqrt{R r}}{\pi}\left(\frac{2 n}{2 n-1}\right) \tag{1}
\end{align*}
$$

Where the equation for $R_{n n}$ given in the problem text was used. The potential at D is then obtained by making the replacement $n \rightarrow n+1$ in 1 :

$$
\begin{equation*}
U_{D}=\frac{I \sqrt{R r}}{\pi}\left(\frac{2 n+2}{2 n+1}\right) \tag{2}
\end{equation*}
$$

This gives the potential difference between C and D as:

$$
\begin{equation*}
U_{C D}=\frac{I \sqrt{R r}}{\pi}\left(\frac{2}{4 n^{2}-1}\right) \tag{3}
\end{equation*}
$$

2 Calculating the Result

Consider the current distribution described above with an additional current I^{\prime} flowing into C and $-I^{\prime}$ into D. Here I^{\prime} is the current through the wire flowing from D to C. The resistance between C and D is $R_{11}=\frac{2 \sqrt{R r}}{\pi}$. Now let us determine $I^{\prime}:$ If the points C and D are short-circuited, they are at the same potential. That means the potential differences due to I and I^{\prime} cancel:

$$
\begin{array}{lc}
& I \frac{\sqrt{R r}}{\pi}\left(\frac{2}{4 n^{2}-1}\right)-I^{\prime} \frac{2 \sqrt{R r}}{\pi}=0 \\
\Longleftrightarrow \quad & I^{\prime}=\frac{I}{4 n^{2}-1} \tag{4}
\end{array}
$$

Now, the contribution to the potential U_{B} due to I^{\prime} gives the change in the potential at B that occurs when C and D are short-circuited while maintaining a constant current I. So

$$
\begin{equation*}
U_{B}=\left(R_{11}^{\prime}-R^{\prime} 11\right) I \tag{5}
\end{equation*}
$$

Fortunately, U_{B} can be found using equation 3. This is because the change $A, B, C, D \rightarrow D, C, B, A$ corresponds to a rotation of the grid that leaves it unchanged. Furthermore, we need to make the replacement $I \rightarrow-I^{\prime}$, where the negative sign is used because I^{\prime} flows into C rather than D. So combining 3 and 4 with these changes gives:

$$
\begin{equation*}
U_{B}=-\left(\frac{2 \sqrt{R r}}{\pi\left(4 n^{2}-1\right)^{2}}\right) I \tag{6}
\end{equation*}
$$

This can be compared with 5 to give the final result:

$$
R_{11}^{\prime}-R_{11}=-\frac{2 \sqrt{R r}}{\pi\left(4 n^{2}-1\right)^{2}}
$$

