Solution to Problem 2

Felix Bekir Christensen

January 19, 2019

1 First Process

First the fraction $\eta=\frac{n-1}{n}$ of the ice, whose temperature is not minimised is heated to T_{0}, while part of the water is frozen. Because the latter happens at constant temperature, the water can be treated as an ideal heat reservoir at constant temperature. It will be shown later that not all of the water is frozen. The small entropy increment of the ice is given by $d S=\frac{d Q}{T}$, but since $d Q=\eta m \alpha T d T$, this becomes:

$$
\begin{equation*}
d S=\eta m \alpha d T \tag{1}
\end{equation*}
$$

The total change in entropy is obtained by integrating this expression:

$$
\begin{equation*}
\Delta S_{1}=\int_{T_{0}-t}^{T_{0}} \eta m \alpha \mathrm{~d} T=\eta m \alpha t \tag{2}
\end{equation*}
$$

The heat added during the heating process is found by integrating the heat capacity with respect to temperature:

$$
\begin{equation*}
\Delta Q_{1}=\int_{T_{0}-t}^{T_{0}} \eta m \alpha T \mathrm{~d} T=\eta m \alpha\left(T_{0} t-\frac{t^{2}}{2}\right) \tag{3}
\end{equation*}
$$

Since the water has constant temperature T_{0}, its entropy change is simply:

$$
\begin{equation*}
\Delta S=\frac{\Delta Q_{2}}{T_{0}} \tag{4}
\end{equation*}
$$

The efficiency is a maximum whence the total change in entropy vanishes:

$$
\begin{equation*}
\Delta S_{1}+\Delta S_{2}=0 \tag{5}
\end{equation*}
$$

Leading to:

$$
\begin{equation*}
\Delta Q_{2}=\eta m \alpha T_{0} t \tag{6}
\end{equation*}
$$

The available work is

$$
\begin{equation*}
W=-\Delta Q_{1}-\Delta Q_{2}=\frac{\eta m \alpha}{2} t^{2} \tag{7}
\end{equation*}
$$

The energy that would be released by freezing all of the water is $\lambda m=3.34$. $10^{5} \mathrm{Jkg}^{-1} \mathrm{~m}$. Using $\alpha=7.51 \mathrm{Jkg}^{-1}, t \approx 10 \mathrm{~K}$ (order of a few kelvins) and $\eta \approx 1$ (large n), the heat that is actually released $\Delta Q_{2} \approx 2.05 \cdot 10^{4} \mathrm{Jkg}^{-1} \mathrm{~m}$. Since this is much smaller than than λm, some of the water always stays liquid and treating it as a heat reservoir at constant temperature is justified.

2 Second process

In the second process the fraction $\frac{1}{n}$ of the ice is cooled down to its minimum achievable temperature $T_{\text {min }}=T_{0}-t^{\prime}$ while the heat released as well as the work from the previous part are put into melting some of the remaining ice. Integrating (1), the entropy change due to cooling the ice is found to be:

$$
\begin{equation*}
\Delta S_{3}=\frac{m \alpha}{n}\left(t-t^{\prime}\right) \tag{8}
\end{equation*}
$$

Integrating the heat capacity, similarly to (3) gives:

$$
\begin{equation*}
\Delta Q_{3}=\frac{m \alpha}{n}\left(T\left(t-t^{\prime}\right)+\frac{t^{\prime 2}-t^{2}}{2}\right) \tag{9}
\end{equation*}
$$

As melting like freezing occurs at constant temperature, we simply have:

$$
\begin{equation*}
\Delta S_{4}=\frac{W-\Delta Q_{3}}{T_{0}} \tag{10}
\end{equation*}
$$

Similarly to the heat engine, the refrigerator has maximum efficiency when:

$$
\begin{equation*}
\Delta S_{3}+\Delta S_{4}=0 \tag{11}
\end{equation*}
$$

Which after some algebra simplifies to:

$$
\begin{equation*}
t^{\prime}=\sqrt{n} t \tag{12}
\end{equation*}
$$

So the minimum achievable temperature is given by:

$$
T_{\min }=T_{0}-\sqrt{n} t
$$

This is in fact the minimum achievable temperature, since the remaining ice and water are both at temperature T_{0}, so there is no temperature differential which would allow us to extract further work to be used for cooling. And since all steps were reversible, a different set of processes could not have lead to a lower temperature either.

