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1 First Process

First the fraction η = n−1
n of the ice, whose temperature is not minimised is

heated to T0, while part of the water is frozen. Because the latter happens
at constant temperature, the water can be treated as an ideal heat reservoir
at constant temperature. It will be shown later that not all of the water is
frozen. The small entropy increment of the ice is given by dS = d̄Q

T , but since
d̄Q = ηmαTdT , this becomes:

dS = ηmαdT (1)

The total change in entropy is obtained by integrating this expression:

∆S1 =

∫ T0

T0−t
ηmα dT = ηmαt (2)

The heat added during the heating process is found by integrating the heat
capacity with respect to temperature:

∆Q1 =

∫ T0

T0−t
ηmαT dT = ηmα

(
T0t−

t2

2

)
(3)

Since the water has constant temperature T0, its entropy change is simply:

∆S =
∆Q2

T0
(4)

The efficiency is a maximum whence the total change in entropy vanishes:

∆S1 + ∆S2 = 0 (5)

Leading to:
∆Q2 = ηmαT0t (6)

The available work is

W = −∆Q1 −∆Q2 =
ηmα

2
t2 (7)
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The energy that would be released by freezing all of the water is λm = 3.34 ·
105Jkg−1m. Using α = 7.51Jkg−1, t ≈ 10K (order of a few kelvins) and η ≈ 1
(large n), the heat that is actually released ∆Q2 ≈ 2.05 · 104Jkg−1m. Since
this is much smaller than than λm, some of the water always stays liquid and
treating it as a heat reservoir at constant temperature is justified.

2 Second process

In the second process the fraction 1
n of the ice is cooled down to its minimum

achievable temperature Tmin = T0 − t′ while the heat released as well as the
work from the previous part are put into melting some of the remaining ice.
Integrating (1), the entropy change due to cooling the ice is found to be:

∆S3 =
mα

n
(t− t′) (8)

Integrating the heat capacity, similarly to (3) gives:

∆Q3 =
mα

n

(
T (t− t′) +

t′2 − t2

2

)
(9)

As melting like freezing occurs at constant temperature, we simply have:

∆S4 =
W −∆Q3

T0
(10)

Similarly to the heat engine, the refrigerator has maximum efficiency when:

∆S3 + ∆S4 = 0 (11)

Which after some algebra simplifies to:

t′ =
√
nt (12)

So the minimum achievable temperature is given by:

Tmin = T0 −
√
nt

This is in fact the minimum achievable temperature, since the remaining ice
and water are both at temperature T0, so there is no temperature differential
which would allow us to extract further work to be used for cooling. And since
all steps were reversible, a different set of processes could not have lead to a
lower temperature either.
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