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by Johanes Suhardjo

Diffraction grating is usually used to separate polychromatic light (light containing many wave-
lengths), because the maximum interference for every wavelength depends on the value of the wavelength.
The pattern on the screen must be determined by the shape of the diffraction grating and for this problem
we have a check-board-like reflective diffraction grating with every cell having size of 20λ0 × 20λ0. As
it can be easily obtained from the given equation, for every neighbouring cells, the difference of height
is 20λ0 if the two cells are neighbours in the x direction and λ0 if the two cells are neighbours in the y
direction. We can also see that since |x|, |y| < 5000λ0, there are in total 500× 500 cells on the diffraction
grating. Now, a beam of white light which contains all wavelengths from λ1 = 400 nm to λ2 = 700
nm is coming perpendicularly to the grating. Since the size of every cell is in the same order with the
wavelengths of the light, we couldn’t use ray optics approximation. Instead, we have to consider the wave
nature of the light. This means that although the light beam is coming perpendicular to the grating, the
reflected light beam will not only be perpendicular to the grating. There are also beams of light which
make a certain angle with the z axis, after being reflected by the grating. One can use Huygen’s principle
to see why this is the case (the analogy of this is simply one-slit diffraction phenomena. The light beam
doesn’t only propagate perpendicular to the slit, but there are also beams which make certain angles
with the slit). The side surfaces of the grating are assumed to be perfectly absorbing which means that
they will give no effect on the pattern except that they will block some of the light (nonetheless, it will
be shown that this effect is small).

First, let us consider the effect of the diffraction for every cell. For convenience, let us denote the
wave vector ~k = kxx̂+ ky ŷ + kz ẑ of the reflected light beam. Suppose that two light beams are reflected
by two points on a cell which are separated by ∆~r. Just after the reflection, the two beams must have an
equal phase, but then one of the beam must travel further, so the two will have phase difference φ = ~k.∆~r
(this is because one of the beam must travel ∆~r.k̂ further). For 1D diffraction it is easy to obtain using

phasors diagram that E = E0
sin(δ/2)
δ/2 , where E is the resultant electric field, E0 is the total electric field if

they are all adding constructively and δ is the phase difference between the two light reflected by the two
ends. Now, for a rectangular cell, we can first sum the electric field for diffraction in the x direction (for
a certain value of y), then we sum for all value of y. Therefore, the effect of diffraction by a rectangular

cell can be seen as the product of the diffraction effect in each direction, and E = E0

(
sin δx/2
δx/2

)(
sin δy/2
δy/2

)
.

We don’t actually need this result, but the important thing is to see that the diffraction can be seen
as a product of each x and y direction. For our grating, then we have δx = kx20λ0 and δy = ky20λ0.
Actually, if kx or ky is positive then there will be some light blocked by the side surfaces, so the effective
area will no longer be 20λ0 × 20λ0, but we will later see that kx, ky << kz and we can conclude that
the side surfaces give small effect. Also, as one can observe from the phasors diagram, the diffraction
minima occur when δ is an integer multiple of 2π because the phasor diagram will be a complete circle
and therefore the resultant electric field is zero.
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Figure 1: Left figure is phasors diagram for interference of N = 3 sources, each having equal magnitude
of electric field and phase difference with the neighbour. The right figure shows the phasors diagram for
diffraction, the shape is a circle because each small sources can be seen as equally long small phasors and
since the change of phase is continuous it makes a circle arc. Note that for interference case ~E0 is the
electric field of a source while for the diffraction case it is if all sources add constructively.
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After we consider the diffraction effect of one cell, we can now consider the effect of interference
between the cells on the grating. Each cell can be represented by a phasor and likewise, we can sum the
x direction contribution first, then summing for all y. Hence, the effect of interference can also be seen
as a product of each x and y interference. The phase difference between two neighbouring cells can be
calculated as follows. Just after being reflected by the two cells, the light beam from the lower cell has
traveled ∆z more than the other beam. Next, it will also need to travel ∆~r.k̂ more than the other beam,
with ∆~r = ∆zẑ + ∆ρρ̂. So, the phase difference is φ = k∆z + ~k.∆~r. For two cells neighbouring each
other in the x direction, ∆z = 20λ0 and ∆ρ = ∆x = 20λ0. Thus, φx = (k + kz + kx)20λ0. Likewise, for
two cells neighbouring in the y direction, φy = (k + kz)λ0 + ky20λ0. Since there are N ×N = 500× 500
cells, from the phasor diagram we can see that the interference minima happen when Nφ = m2π with
m an integer. Notice however that when φ = n2π, all the beams add constructively. So, the minima are
when m is not an integer multiple of N , otherwise it will be a maximum. Now, we want the brightest
spot for every λ. To be clear, after this, when diffraction word is used it refers to the diffraction by each
cell alone and interference word will be used when considering the effect of interference between the cells
on the grating. The maximum position from the diffraction effect is clearly at point (0, 0) because then
the light beam will be reflected perpendicularly. However, this may not be the brightest spot because
there is phase difference due to ∆z. The brightest spot can’t also be too far from (0, 0), because the
diffraction effect will greatly reduce the intensity. To determine the position of the brightest spot, let
us first write the phase difference for every contribution. For a position (x, y) on the screen we have

kj = k js with j = x, y, z and s =
√
x2 + y2 + z2. Now, let us assume that s ≈ z = 50 cm, we will

justify this approximation by showing that our points of interest have positions with x, y << z. The
first dark spot due to diffraction effect is when δ = 2π, so the positions of the first order dark spots are
|x| = xd = λ

20λ0
z ≈ 2.5 cm and |y| = yd = λ

20λ0
z ≈ 2.5 cm. We can see that xd, yd << z. On the

other hand, the interference pattern is periodic every time φ is increased by 2π, so for the x interference,
φx = (k+ kz + kx)20λ0 ≈ k(2 +x/z)20λ0 is periodic every time x is increased by ∆xi = λ

20λ0
z. Likewise,

φy ≈ kλ0(2 + 20y/z), so it is periodic every ∆yi = λ
20λ0

z. Notice that ∆xi,∆yi are also the separation
between two neighbouring (global) maxima of the interference effect alone and therefore, there must be
at least one interference maximum in the region between the two first order diffraction minima. The
brightest spot for every λ must then also lie inside this region. Thus, we can limit our attention inside
this region (|x| < xd, |y| < yd) and since xd, yd << z our approximation that s ≈ z is justified.

Let us now consider the width of the interference maxima. The dark spot due to the interference effect

is when φ = m 2π
N , consequently the positions of these are xid =

(
mxλ
N20λ0

− 2
)
z and yid =

(
myλ
N20λ0

− 2
20

)
z

with mx and my are integers but not a multiple of N . For both the x and y direction, the width of
the interference maxima is simply the distance between m = N + 1 and m = N − 1, so the width of an
interference maximum is lix = liy = λ

10Nλ0
z. Notice that this width is much smaller than that of the

diffraction effect, because N >> 1. The width of the interference maximum is only 1/500 of 2xd, so the
brightest spot for every λ is very close with the position of interference maximum which is the closest
to point (0, 0). Between two interference global maxima, there are several numbers of local maxima but
since N >> 1 the intensity is small compared the global maxima.

We can now start to determine the position of the brightest spot for every λ. The interference

maximum is when φ = n2π, so the position of the brightest spot is xi =
(
nx

λ
20λ0

− 2
)
z and yi =(

ny
λ

20λ0
− 2

20

)
z, with integer nx and ny. We want nx and ny such that xi and yi are the closest to (0, 0).

Let us first consider the y position. To find the brightest spot, consider the following steps. For the same
order (the same value of ny), as λ is getting bigger, yi will also be getting bigger. When the brightest
spot is at y = yd/2, another bright spot having the same intensity will occur at y = −yd/2. This bright
spot is the one from smaller value of ny, and this is true because the distance between two neighbouring
maxima is ∆yi = yd = λ/20λ0. Once λ is increased such that yi > yd/2 the brightest spot will then be
the one from smaller order, because this is closer to y = 0 and thus is brighter due to the diffraction effect
of each cell on the grating. The brightest spot is then bounded inside the region |y| < yd/2. Using this
fact, one can easily obtain ny <

2λ0

λ + 1
2 and since λ1 ≤ λ ≤ λ2, it turns out that only ny = 2 and ny = 1

gives the position of interference maximum inside the region of |y| < yd/2 for all range of λ (for λ = λ1,
ny = 3 is actually also inside the region because when λ = λ1 the brightest spot is at yi = ±yd/2). The
same thing can be done to determine the x position of the brightest spot and this brightest spot must also
be inside the region |x| < xd/2. Now, for the y position, the order changes when yi = yd/2 = zλ/40λ0,

so when ny = 2, the order changes when λ = 4λ0/3. Thus, we have yi = z
10

(
λ
λ0
− 1
)

when λ < 4λ0/3
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and yi = z
10

(
λ

2λ0
− 1
)

when λ > 4λ0/3. Therefore, the position of the brightest spot as a function of

lambda is

xi =

(
nx

λ

20λ0
− 2

)
z

yi =

(
ny

λ

20λ0
− 2

20

)
z

where nx, ny is an integer such that |xi| < xd/2 and |yi| < yd/2. For the x position, as ∆z is bigger, a
change in λ will be more significantly affecting the phase difference, and it can be found that nx varies
more than ny for the given values of λ (from 50 until 29). The outer boundary for the x position can be
expressed in terms of yi, the y position of the brightest spot,

|xout| =
xd
2

=
z

40λ0
λ =

(
y

2ny
+

z

20ny

)
This can help us in drawing the diagram. Notice that, in deriving the above equations, we make the
assumption that the intensity at x = xd/2 is the same with at x = −xd/2 and the intensity at y = yd/2
is the same with at y = −yd/2, however, the side surfaces are blocking some of the light which goes to
x, y > 0 on the screen. Since z ≈ s, the angle is small and therefore the effect is negligible (actually, the
effect of the blocking is first order especially for the x direction but it will be cancelled by the diffraction,
see appendix). Finally, as it can be easily checked when λ = λ1 = 400 nm the brightest spot is at y = −1
cm (as well as y = 1 cm) and x = 0 cm with nx = 50 and when λ = λ2 = 700 nm, the brightest spot is
at x = 1.5 cm, y = −1.5 cm with nx = 29. The brightly illuminated region is sketched below.

Figure 2: Handwritten sketch showing the brightly illuminated region on the screen. The arrow is showing
the direction of increasing wavelength.
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Appendix

The intensity as a function of x and y on the screen can be obtained exactly, although this is not
so needed as the above approximation is very good. From the phasors diagram, we can obtain that the
resultant electric field for the interference effect. One can see from the geometry, that R = E0

2 sin(φ/2) , so

we have E = 2R sin(Nφ/2) = E0 sin(Nφ/2)/ sin(φ/2). The intensity is then given by

I(x, y) = I0

(
sin(δx/2)

δx/2

)2(
sin(δy/2)

δy/2

)2(
sin(Nφx/2)

sin(φx/2)

)2(
sin(Nφy/2)

sin(φy/2)

)2
A2

A2
0

where A is the effective area of each cell and A0 = 400λ20 is the area of each cell. Here, I0 is the intensity
if light from a cell adds constructively. The effective area, A is equal with A0 for points x, y < 0 (because
no light then will be blocked by the side surfaces). For points with x, y > 0, some of the light will be
blocked, and if x > z and y > 20z all the reflected light will be blocked. This is very far from our
region of interest, because we are only interested in the region x, y < xd/2, yd/2 z/40. However, for the
x direction, the effective length of each cell is then is around (1− 1/40)20λ0. As we can see, this is still
first order. Nevertheless, notice that δx also changes. Now, δx = kxa with a is the effective length, so
now the denominator of the term inside the first bracket above cancels the blocking effect. So, the effect
of the side surfaces is only inside the δx and δy which are inside the sin function and it is negligible.
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