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1 Circuits with resistors, batteries, ammeters
and voltmeters

The fundamental physics of circuits of resistors, batteries,
ammeters and voltmeters is really simple, and is essentially
covered with just four laws: the two Kirchoff’s laws, Ohm’s
law and Joule’s law1 — formulated here as “facts”. First, the
Kirchoff’s laws:

fact 1: The sum of electrical currents flowing into a node2

of a circuit is zero.

Mathematically, ∑
wires connected to the i-th node

Iν = 0,

where Iiν stands for the current in the ν-th wire. This assumes
that Iν is taken with a ‘+’ sign if it flows into the i-th node
and with a ‘−’ sign otherwise. We can also say that the sum of
in-flowing currents equals to the sum of out-flowing currents.

Since the electrical current is defined as the charge flowing
through a wire’s cross-section per unit time, this law is essen-
tially the continuity law for electrical charges, combined with
the fact that typically, the capacitance of any wire and any cir-
cuit node is negligible 3 (hence, the charges residing on the
nodes and wires can be neglected).

For those who are not yet developed good intuition with
electrical currents, the analogy with water flow in branching
rivers or water pipes might be useful: the sum of the water
fluxes (measured in cubic meters of water per second) equals
to the water flux in the main stream. Note that the continuity
law plays an important role for many physical processes (with
gas- fluid or granular flows, but also e.g. for traffic fluxes).

fact 2: Along a closed loop of an electrical circuit, the sum
of voltage drops on the circuit elements (resistors, diodes, ca-
pacitors, etc) equals to the sum of the electromotive forces (of
batteries and inductors).

Mathematically, ∑
wires forming a closed loop

Vν = 0,

where the voltage drop on ν-th wire is taken with ‘+’ sign if
the voltage of the destination node is lower than that of the
departure node, unless the wire includes an electromotive force
(emf.): the voltage drop caused by an emf. is taken with the
opposite sign.

This law simply states that electrostatic field is a potential
field; using a mountain-hiking-analogy, if you walk so that you
end at the same point from where you started, you ascended
exactly as many meters as you descended. The electromotive
force of a battery performs work on charge carriers by using

chemical energy (in the case of magnetohydrodynamic generat-
ors and inductors/inductor based dynamos, the nature of emf.
is somewhat different but for the time being, the details are not
important: practical application of the Kirchoff’s laws remains
the same). With the mountain-hiking-analogy, an electromot-
ive force can be considered as a ski-elevator which lifts you
upwards and performs a certain work on you each time you
use it.

While the mountain-hiking-analogy works only for the
Kirhoff’s voltage law, the channel-network-analogy can be ex-
tended to all the direct current phenomena. More specifically,
we consider a closed system of water channels; in a channel, the
water flows only downhill, but there are also pumps which raise
the water uphill. Then, there are the following matching pairs:
(a) electrical charge Q — mass of water m; (b) electrical current
I in a wire, defined as the charge flow rate Q/t, where Q is the
charge flowing through a cross-section of a wire during a time
interval t — mass flow rate of water µ in a channel, defined as
m/t, where m is the water mass flowing through a cross-section
of a channel during a time interval t; (c) a battery of electro-
motive force E which performs work EQ on charge Q (which
passes through the battery) — a pump which pumps water up-
hill, to an height h, and performs work hm on a pumped water
mass m4. Then, obviously, for a closed loop of channels and
pumps, the total pumping height (i.e. the sum of the contribu-
tions of all the pumps) equals to the total downhill descending
height in channels (i.e. to the sum of downhill displacements of
all the channels).

Next, the Ohm’s law:

fact 3: Typically, the voltage V between the input- and out-
put leads (also referred to as the ports)5 of a piece of electrically
conducting material can be considered to be proportional to the
current I through it; the coefficient of proportionality

R = V/I

is referred to as its resistance, and the circuit elements of a
non-negligible resistance are called resistors.

Let us try to interpret this using the pipe-flow analogy. Con-
sider a straight pipe connecting two water reservoirs at different
height. Let us assume that the drag force F between a unit
volume of the flowing water and the pipe’s walls is proportional
to the speed v of the flow6: F = kv. Then, the water speed
is established by the balance between the drag F = kv and
pressure ρwgh, where h is the height difference, ρw — the wa-
ter density, and g — the free fall acceleration. Therefore, v
will be proportional to h, which, according to the analogy, cor-
responds to the voltage. Now, let us recall that the current
I corresponds to the water flux, which equals to the product
of the water speed v and pipe’s cross-sectional area S, and is
therefore also proportional to h (the counterpart of the voltage
V ). Such a proportionality is exactly what is stated by the
Ohm’s law.

1G. Kirchoff 1845, G.S. Ohm 1827, and J.P. Joule 1841, respectively
2node (=vertex in graph theory) — a point where different wires meet
3In the case of very fast or high-frequency processes, this approximation is not valid; then, an equivalent circuit can be used, with ideal wiring and

equivalent capacitors and inductors representing the capacitances and inductances of the real wires.
4Here we have put the free fall acceleration g = 1 which can be done if an appropriate system of units is used
5Ports (input- and output leads) — points where the current can enter and exit; often just the endpoints of a wire.
6This is valid for sufficiently thin pipes for which viscous drag dominates over the turbulent one

— page 1 —



1. CIRCUITS WITH RESISTORS, BATTERIES, AMMETERS AND VOLTMETERS

For water flow in a narrow pipe, the drag force is propor-
tional to the flow speed and to the pipe length l, i.e. k = κl.
For ordinary pipes, the drag force (and hence, the coefficient
κ) depends also on the diameter of the pipe. However, let us
assume that κ is constant (this would correspond to the case
when we fill the pipe with a granular material, e.g. coarse sand).
Pursuing the analogy, the resistance R = V/I corresponds to
the ratio of the height difference h, and water flux. According
to the discussions above, this is proportional to the pipe length
l, and inversely proportional to the cross-sectional area S of
the pipe (because for a fixed v, the flux is proportional to S).
Hence, we arrive at the following fact.

fact 4: The electrical resistance of a wire (of a length l and
cross-sectional area S)

R = ρl/S,

where ρ is called the electrical resistivity of the wire material
(σ = 1/ρ is called the conductivity).

The proportionality law between V and I fails actually
quite often: for instance, in the case of light bulbs, the de-
pendence between the voltage and current is nonlinear. Even
then, the ratio V/I is referred to as the resistance. In the case
of a non-linear V − I dependence, the resistance just depends
on the voltage; the derivative dV

dt is referred to as the differen-
tial resistance. If a circuit element is referred to as a resistor,
its resistance is assumed to be constant.

Finally, the Joule’s law:

fact 5: The power dissipated on a circuit element
P = IV,

where V is the voltage on its leads, and I — the current through
it. Alternatively, bearing in mind that

I = Q/t,

where Q is a charge flowing through the element and t is a time
interval, we can say that the current performs work

A = QV.

Using the analogy of the rivers (channels), the power of a water-
fall’s power plant is given by the gravitational potential energy
released per unit time, which is proportional to the product of
the waterfall’s height and the water flow rate.

Using mathematical induction, it is not too difficult to show
the following fact.

fact 6: If all the resistors and battery voltages (the electro-
motive forces) are known, and currents of the wires are con-
sidered as unknown variables then the Kirchoff’s laws and the
Ohm’s law form a closed set of linear equations which can be
solved to find all the currents and voltages in the circuit (i.e.
the solution is unique).

This fact itself can be sometimes useful: if you are able to
“guess” the solution, it will suffice to show that all the Kirchoff’s
equations are satisfied (there is no need to derive the answer
systematically).

Typically, the number of unknown variables in the
Kirchoff’s equations (and hence, the number of equations) is
large, and solving can be tedious. In order to make calcula-
tions easier, several tricks and techniques can be applied.

idea 1: If a circuit can be presented as a combination of
series- and parallel connections (see below for an algorithm),
the system of Kirchoff’s equations becomes decoupled, and
there is no need to write the full system of equations. Instead,
the following rules can be applied. (A) For parallel connections,
the net conductance (inverse resistance) is the sum of conduct-
ances and the net current splits in proportions proportional to
the conductances:

1
Rpar

=
∑

i

1
Ri

; Ii = RparI

Ri
.

(B) For series connections, the net resistance is the sum of res-
istances and the voltage is distributed proportionally to the
resistances:

Rser =
∑

i

Ri; Vi = RiV

Rser
.

Algorithmically, the procedure of applying the idea 1 can
be formulated as follows. If two or more resistors are connected
between the same pair of nodes A and B, substitute these with
an equivalent resistance according to the formula for Rpar; if
two or more resistors form a branch-less chain connecting nodes
A and B, substitute this chain with an equivalent resistance ac-
cording to the formula for Rser; remove all the “dangling ends”
(parts of the circuit which are connected to the rest of the cir-
cuit only via a single wire); repeat the process iteratively. The
process will stop if (A) only one equivalent resistance remains,
or (B) if a bridge is formed (i.e. for a set of four nodes, five or
more pairs are connected via resistors).

These rules and formulae can be easily derived using the
Kirchoff’s laws. Indeed, all the resistors connected in paral-
lel between A and B have the same lead voltage VAB ; hence,
the currents Ii = VAB/Ri are proportional to the conduct-
ances. This gives rise to total current between A and B

I =
∑

i Ii =
∑

i VAB/Ri = VAB

∑
i 1/Ri, which leads us

to the above given formula for Rpar ≡ VAB/I. All the res-
istors connected in series between A and B have the same
current IAB passing through, so that the voltage on each of
them Vi = IABRi, i.e. the voltage is proportional to the res-
istance. The total voltage is V =

∑
i Vi = IAB

∑
i Ri, hence

Rser ≡ VAB/I =
∑

i Ri. Finally, regarding the removal of the
“dangling ends”: due to the Kirchoff’s laws, the sum of currents
entering a subset of a circuit needs to be zero; if there is only
one wire connecting a circuit’s subset to the rest of the circuit,
its current needs to be zero, hence it does not affect the current
distribution and its presence can be ignored.

The following problem illustrates the idea 1 in its simplest
form (for a series connection), together with the fact 4.

pr 1. A uniform wire of cross-sectional area A0 = 1 mm2 had
a millimetre scale marked on it: an array of streaks with inter-
streak distance a0 = 1 mm covered the entire length of the wire.
The wire was stretched in a non-uniform way, so that the inter-
streak distance a is now a function of the distance l from one
end of the wire (as measured after the stretching), see figure.
The new length of the wire is L = 4 m. Using the graph, determ-
ine the electrical resistance R of the stretched wire assuming
that the resistivity of the wire material is ρ = 1.0 × 10−6 Ω m.
During the stretching, the density of the wire material remains
constant.
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However, for this problem we need one more idea, which is
very universal, not limited to electricity.

idea 2: Many physical quantities can be expressed as integrals
of other quantities — these can be found as surface areas under
graphs. In order to figure out, which surface area is needed, the
following technique can be used. Divide the parameter range
(for the problem above, the parameter l) into small intervals; if
each interval makes an additive contribution to the given phys-
ical quantity (here, the resistance R), express this contribution
in terms of the interval width and other relevant parameters;
design such graph axes that this contribution is proportional
to the surface area of a thin rectangular region in the graph.
Then, once we sum up the contributions of all the intervals and
tend the interval widths to zero, the physical quantity of our
interest will be expressed in terms of a graph area.

For the problem above, each wire segment of length ∆l will
contribute a resistance ∆R = ρ∆l/A to the overall resistance
R; these wire pieces are connected in series, so the resistances
can be just added up. The wire volume remains constant,
Aa = A0a0, hence A = A0a0/a so that

∆R = ρ

A0a0
a · ∆l.

Note that ρ
A0a0

is a constant (does no depend on l), and a · ∆l
is the surface area of the blue rectangle in the a− l, see fig. be-
low. The sum of all these rectangles (the grey and blue region
in figure) approximates the surface area of the region between
the a(l)-curve and the l-axis, and at the limit ∆l → 0 becomes
equal to that area. Such infinitesimally small increments are
called differentials and are denoted by the prefix d (substitutes
the prefix ∆ which we used for finite increments); the sum over
all the infinitesimally small intervals is denoted by the integral
sign

∫
. So, we can say that R ≈ ρ

A0a0

∑
a · ∆l (where the sign∑

denotes summing over all the intervals), and at the limit of
infinitesimal increments dl we obtain equality

R = ρ

A0a0

∫ 4 m

0
a · dl,

where
∫ 4 m

0 a · dl is the surface area under the a(l) graph.

The next problem serves as another simple example of the
idea 1.

pr 2. In the figure, R1/R2 = 4. If we add a lamp as shown
if figure, current through R1 will increase by ∆I = 0.1 A. Find
the current through the lamp.

It can be solved in a long way, and in a short way. For the
long solution, another very generic idea is used.

idea 3: If it seems that there are too few data provided in
the problem text, just assume the “missing” data to be known
(here, for instance, the lead voltage U and the resistance R1);
if everything goes well, the “missing” data will cancel out from
the answer.

For the short solution, a useful modification of the Kirchoff’s
laws can be applied.

idea 4: Kirchoff’s laws are not valid only for the currents and
voltages, but also for voltage increments ∆Vi = Vi(after) −
Vi(before) and current increments ∆Ii = Ii(after) − Ii(before).

Sometimes the circuit is drawn so that it is not very easy
to understand, does it break down into parallel- and series con-
nections or not. In that case, the following idea is to be used.

idea 5: Redraw a circuit so that its structure becomes as
clear and simple as possible: contract plain wires (which con-
nect a pair of leads) into a single point and if possible, em-
phasize the structure of parallel- and series connections. Bear
in mind that if several leads are all connected together with a
plain wire, the wiring can be arbitrarily rearranged (as long as
the relevant leads remain connected), for instance as shown in
figure below. Indeed, one can say that the effect of a wire is
equalling the voltages on two leads, and in the case of several
leads, it doesn’t matter in which order the lead voltages are
made equal.

This idea can be illustrated with a task from the 27th IPhO,
see below.

pr 3. Determine the resistance between the leads of the cir-
cuit in figure.

[IPhO-1996] For complex circuits, it is easy to make mistakes
while simplifying the circuit; typically, this happens when the
remote nodes are connected with wires. To avoid mistakes,
the following technique can be applied. Label all the resist-
ors, e.g. with letters; if there is more than one battery, label
the batteries, as well. Label also all the nodes, so that all the
nodes connected with a plain wire bear the same label, and
those which have no direct wire connection have different la-
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bel. Then, start redrawing the circuit by marking (on a sheet
of paper) one node and drawing all those resistors which are
connected to it. Next, select another lead of one of the drawn
resistors or batteries, mark the respective nodes and draw the
resistors which are attached to that node; repeat the process
until the entire circuit is redrawn.

As an example, let us consider the last problem. We mark
the nodes and resistors as shown in figure. Note that due to
the wire connections, the node symbols appear in two different
places.

We start with drawing the node ‘A’,
see the figure. Since the node ‘A’ is
directly connected to the resistors ‘1’,
‘2’ and ‘3’, we draw these resistors at-
tached to the node ‘A’ as shown in figure. The other ends of
the resistors ‘1’ and ‘2’ are fixed to the node ‘C’, hence we can
connect the respective wires and designate the connection point
by ‘C’. Further, the other end of the resistor ‘3’ is connected to
the node ‘B’, so we draw a wire and mark its end with ‘B’. Now,
by noticing that the resistors ‘4’ and ‘5’ connect the nodes ‘B’
and ‘C’, it is easy to complete the circuit.

In the case of non-trivial circuit-redrawing tasks, it is highly
recommended to use this technique of denoting resistors and
nodes with letters and numbers (you don’t want to make a
mistake in redrawing!).

idea 6: If a bridge connection involves only an ideal ammeter
(of zero resistance) or an ideal voltmeter (of infinite resistance),
the bridge connection is only seemingly there, and can be es-
sentially removed (for voltmeter) or short-circuited (for am-
meter). Similarly, it can be removed if there is no current in
the bridge connection due to symmetry. Once the simplified
circuit is solved, it may be necessary to return to the original
(non-simplified) circuit: in the case of an ammeter in a bridge
connection, its current can be found from the Kirchoff’s current
law (written for the currents entering the node to which the am-
meter is attached to); in the case of a voltmeter, its voltage can
be found as the voltage difference between the nodes to which
it is attached using the Kirchoff’s voltage law and the voltages
of the relevant resistors.

In order to illustrate this idea, let us consider the following
problems.

pr 4. Determine the resistance between the leads of the cir-
cuit in figure.

pr 5. Determine the reading of the ammeter in figure.

idea 7: If there are non-ideal ammeters, voltmeters, batter-
ies or current sources included into a circuit then the following
rules can be applied: (a) non-ideal battery of internal resistance
r can be represented as a series connection of an ideal battery
(of zero internal resistance) and a resistance r; (b) non-ideal
current source of internal resistance r can be represented as
a parallel connection of an ideal current source (of infinite in-
ternal resistance) and a resistance r; (c) non-ideal voltmeter
can be represented as a parallel connection of an ideal volt-
meter (of infinite resistance) and a resistance R; (d) non-ideal
ammeter can be represented as a series connection of an ideal
ammeter (of zero resistance) and a resistance R. NB! A non-
ideal ammeter is not a faulty ammeter: it still shows the true
current through itself; similarly, a non-ideal voltmeter shows
the true voltage on its leads.

Regarding the typical values of the internal resistances of real
ammeters and voltmeters, the following guideline can be used.
The most common digital voltmeters have internal resist-
ance of 10 MΩ, but cheaper ones can have also R = 1 MΩ, and
the expensive ones can reach a gigaohm range; typically, the
internal resistance is independent of the measuring range. For
analogue voltmeters, the resistance does depend on the selec-
ted measuring range Vmax, and can be determined by knowing
the so called full-scale deflection current (FSDC). Essentially,
an analogue voltmeter is a galvanometer (device which has a
needle which deflects proportionally to the current through it),
connected in series with such a resistance that with the max-
imal voltage Vmax applied, the current will be equal to the
FSDC. So, if IFSDC = 100µA, and the 10-volt range is selected
then the resistance r = 10 V/100µA = 100 kΩ. Typical values
of the FSDC are in the range from 25 µA to 1 mA.

Digital ammeters measure internally voltage on a small
resistor (shunt) and translate the result into corresponding
amperage; depending on the selected range of currents, dif-
ferent shunt is used; the voltage drop on the shunt is called
the burden voltage, and the maximal burden voltage (MBV)
VMBV can be used to determine the resistance; for instance,
for the 20-mA range and VMBV = 300 mV, the resistance is
300 mV/20 mA = 15 Ω. Typical values for VMBV range from
100 mV to 1 V. An analogue ammeter is essentially a galvano-
meter connected in parallel with a small resistor (shunt); the
shunt controls which fraction of the net current goes through
the galvanometer and ensures that the voltage on the galvano-
meter does not exceed the full-scale deflection voltage (FSDV).
The shunt resistance can be determined in the same way as in
the case of a digital ammeter: here, FSDV plays the role of the
MBV.

In the case of theoretical Olympiad problems, voltmeters
and ammeters are usually assumed to be ideal, unless other-
wise noted. However, there is an exception to this rule: if the
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problem conditions contradict the assumption of ideality, you
need to abandon it. Please note that in the case of theoret-
ical problems, it is not wise to make assumptions regarding the
values of the internal resistances of non-ideal ammeters and
voltmeters: quite often, the authors of the problems do not
check how real the numerical values of the resistances are.

pr 6. Two identical voltmeters and two ammeters are con-
nected to a battery as shown in figure. The readings of the
devices is as follows: ammeter A1 — I1 = 200 µA, voltmeter
V1 = 100 V, and voltmeter V2 = 2 V. What is the reading of
ammeter A2? Estimate, how realistic are those internal res-
istances which can be determined from these data; if there is
something strange, is it possible to “fix” the problem by chan-
ging the circuit so that the solution would remain intact?

idea 8: Sometimes it is convenient to consider the Kirchoff’s
current law for a whole region and not just for a single circuit
node: the sum of currents entering the region equals to the
sum of outgoing currents.

This idea can be illustrated with the following problem.

pr 7. [EstPhO-2003] 15 identical voltmeters and 15 non-
identical ammeters are connected to a battery as shown in fig-
ure. The reading of the first voltmeter is V = 9 V, the readings
of the first two ammeters are I1 = 2.9 mA and I2 = 2.6 mA.
What is the sum of the readings of all the other voltmeters?

In some cases, the bridge connection is real and cannot be
removed. In the case of Olympiad problems, this is happens
very seldom, because in that case, the difficulties are actually
only mathematical: it is needed to solve the linear system of
Kirchoff equations. There are several methods which simplify
this mathematical task which are presented in what follows.

idea 9: Any circuit which consists only of resistors and has
three ports is equivalent to a ∆- or a Y -connection of three
appropriately chosen resistors7 In particular, a Y -connection
can be substituted by a ∆-connection and vice versa8.

Note that ∆-connection is also called “triangular”, and Y -
connection — a “star”. So, the idea is to substitute either a
triangular connection with a star connection or vice versa so
that the resulting circuit is simpler to analyse than the ori-
ginal one. While doing so, all the three lead potentials need
to remain unchanged. Let us consider the simplest case when
all the three resistors are equal: for a ∆-connection R, and
for a Y -connection — R. Then, the inter-lead resistance of
the Y -connection is 2R (two resistors in series), and for the
∆-connection — 2

3r (2r in parallel with r). Therefore, there is
matching between these circuits if 2R = 2

3r, hence r = 3R: the
∆-connection needs to have thrice as large resistances as in the
case of a Y -connection. This rule — if forgotten — can easily
derived whenever needed.

In the generic case of non-equal resistances, the Y − ∆-
substitution formulae are derived by solving the system of three
equations stating pair-wise equality of the inter-lead resistances
rAB , rBC , and rCA; the result is as follows: for a ∆-to-Y -
substitution

RA = RABRAC

RAB +RAC +RBC
, (1)

and analogously for RB and RC (the indices are to be substi-
tuted cyclically); for a Y -to-∆-substitution,

1
RBC

=
1

RB
· 1

RC

1
RA

+ 1
RB

+ 1
RC

, (2)

and analogously for RBC and RCA.
It would consume quite a lot of time to derive these formu-

lae during an Olympiad, so it is better to remember them. Re-
membering is actually not that difficult; first, let us talk about
∆-to-y-substitution which is typically more useful than the re-
verse one (there are exceptions) as it removes a loop from the
circuit — loops can create bridge connections and are difficult
to analyse. Even if that is not the case, ∆-to-y-substitution
tends to reduce the number of parallel connections (the reverse
substitution tends to increase it), leading to simpler calcula-
tions as typically, resistances and not conductances are given.
The denominator of the formula is very simple - just the sum
of all the resistances. The nominator is also simple, a product
of two resistances, we just need to be able to figure out which
of the three resistances is to be excluded from the product.
This, however, can be easily figured out from the symmetry
considerations: so, for a resistor attached to the node B in Y -
connection, we exclude the resistor at the opposing side AC of
the ∆-connection.

If we really need a y-to-∆-substitution, the formula can
be also easily deduced from the structure of the ∆-to-y-
substitution: just the resistances need to be changed to con-
ductances.

Note that the idea 9 cannot be generalized to circuits of
resistors with n ports with n > 3.9 An exception is the case
when all the pair resistances are equal (to R), in which case the
circuit is equivalent to a star connection of n resistors, each of
resistance R/2 (though it is still not equivalent to a n-gon-
connection of equal resistances, because for a polygon, close
node pairs have smaller resistance than remote node pairs).

7The proof is provided in Appendix 1 on pg. 14.
8A.E. Kennelly, 1899.
9Indeed, there are 1

2 n(n − 1) different lead pairs, which can all have different resistances; for a generic case, the respective 1
2 n(n − 1) equivalence

equations cannot be solved with respect to the n resistances of a star (or a polygon) connection as long as 1
2 n(n − 1) > n, i.e. n > 3.
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As an illustration, let us consider the following problem.

pr 8. Determine the current through the battery.

idea 10: Any circuit which consists only of resistors and
batteries and has two ports A and B is equivalent to a series
connection of a battery and a resistance (the Thvenin’s the-
orem)10. The electromotive force E of the battery can be found
as the voltage difference between the leads A and B when there
is no load connected externally between these leads (this is be-
cause the original and the substitution circuits must behave
identically when there is no load).

The resistance r (the internal resistance of the battery) can be
found as E/I0, where I0 is the current which would flow in a
wire short-circuiting the two leads (this is because the original
and the substitution circuits must behave identically when the
leads are connected by a wire). Alternatively, r can be found
as the resistance between the leads A and B when there is no
external load, and all the ideal internal electromotive forces are
substituted by wires (this is because the original and the substi-
tution circuits must have identical increase of the lead voltage
when there is a certain increase of the lead current, and an
ideal battery and a piece of wire have identically a zero voltage
response to an increase of the current).

As an illustration, let us consider the following problems.

pr 9. Determine the current through the batteries.

In order to make the application of the idea 10 more trans-
parent, let us solve the first part of the last problem, and find
the current through the 3-V-battery. In figure below, the black
and blue part of the circuit will be substituted by a battery
of electromotive force E and internal resistance r (see figure,
section on right). To begin with, we assume that there is no
load, i.e. the part drawn in red is missing. Then, the blue bat-
tery creates currents 4 V/2 Ω = 2 A and 4 V/4 Ω = 1 A in the
left and right loops, respectively. Consequently, the voltage
drops on the resistances at the bottom of the figure (1 Ω and
1 Ω) are equal to 2 A · 1 Ω = 2 V and 1 A · 2 Ω = 2 V, respect-
ively. Hence, the lead voltage is 2 V − 2 V = 0 V, i.e. E = 0.
Next, we calculate the internal resistance r of the equivalent
battery. To this end, we substitute the blue battery with the

orange wire (see figure) and calculate the resistance between
the leads: the parallel connections of 1-ohm resistors and the
parallel connections of 2-ohm resistors are connected in series,
so that r = ( 1

2 +1)Ω = 1.5 Ω. Finally, we return the red part of
the circuit to its place for the equivalent circuit at right (keep-
ing in mind that E = 0 and r = 1.5 Ω): the current through
the 3-V-battery is I = 3 V/1.5 Ω = 2 A.

The following fact can be quite easily derived, but knowing
it will can save some time during an Olympiad.

fact 7: For drawing the maximal power from a battery, the
load’s resistance needs to be equal to that of the internal res-
istance of the battery.

Indeed, the load current I = E/(R + r), where R is the resist-
ance of the load. Hence, the power dissipation at the load
can be found as P = RI2 = E2R/(R + r)2. Let us no-
tice that instead of P , it would be easier to analyse 1/P , be-
cause then the expression will break down into three additive
terms: 1

P = E−2r( R
r + r

R + 2). If P is maximal then 1
P is

minimal; we need to minimize this expression over the values
of R. Upon taking derivative with respect to R we obtain

d
dR

1
P = E−2(1 − r/R2) = 0, hence R = r. (Alternatively, it

would have been possible to apply the fact that the sum of a
number x and its reciprocal 1

x has minimum for x = 1, hence
R
r = 1.) So, Pmax = E2/4r.

pr 10. Determine the maximal power which can be dissip-
ated on a load connected to the leads of the circuit in figure
(the power depends on the resistance of the load, you need to
find the maximum of this dependence).

idea 11: Sometimes it is convenient to deal with constant
current sources — instead of batteries (and sometimes, a cur-
rent source is already present). A battery with electromotive
force E and internal resistance r is equivalent to a constant
current source with I = E/r which is connected parallel to the
shunt resistance r11.

Constant current source is a device which generates a constant
current I regardless of which load is connected to the output
leads — as long as the load resistance is non-infinite. The

10Formulated by H. Helmholtz in 1853 and L. Th�venin in 1883; for a proof, note that the behaviour of a two-lead circuit is defined by the relationship
between the lead voltage V and lead current I; owing to the linearity of Kirchoff’s and Ohm’s laws, this relationship is always linear, V = a − Ib. This
can be always matched with a battery of electromotive E and internal resistance r, for which V = E − Ir.

11If we apply this equvalence to the Th�venin’s theorem, we obtain what is called the Norton’s theorem [E.L. Norton (1926), H.F. Mayer (1926)].
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validity of this theorem can be easily verified: it suffices to
check that for the same lead voltages, the lead currents are
also equal. Suppose that a battery (of electromotive force E
and internal resistance r) has lead voltage V ; then, the voltage
on its internal resistance is E − V and hence, the lead cur-
rent Ibattery = (E − V )/r. If the same voltage is applied
to a constant current source (of constant current I = E/r),
the shunt current will be V/r, i.e. the total current will be
Ic-source = I − V/r = E/r − V/r = (E − V )/r. Indeed,
Ibattery = Ic-source for any lead voltage V , hence this battery
and this current source behave identically.

The next problem illustrates the idea 11 (although it can
be also solved using the idea 10).

pr 11. n batteries with electromotive forces Ei and internal
resistances ri (with i = 1, 2, . . . , n) are connected in parallel.
What is the effective electromotive force and the internal res-
istance of such a system of batteries?

idea 12: The Kirchoff’s equations and the Ohm’s law are
linear (each term includes only a first power of a current or a
voltage), hence the superposition principle is valid. More spe-
cifically, suppose we have a circuit which includes only resistors,
n ideal batteries and m ideal current sources. Then the current
in the j-th wire can be found as

Ij =
n+m∑
k=1

Ij(k),

where Ij(k) is the current in that wire when only the k-th bat-
tery (or current source) is included into the circuit (all the other
batteries are short-circuited and all the other current sources
are removed by cutting off a connection wire).

pr 12. [EstPhO-2012] In the figure below, the batteries are
ideal, R1 = R2 = R3 = R4 = R and E1 = E2 = E . Find the
currents in the resistors (i.e. I1, I2, I3 and I4, expressed via R
and E).

(Note that this problem can be also solved using the idea 19.)

idea 13: The number of unknowns and the number of lin-
ear equations can be reduced by using the method of loop
currents, in which case the first set of Kirchoff’s equations is
automatically satisfied. The first step is selecting a full set of
linearly independent loops l1, l2 . . . ln (the concept of linear de-
pendences is explained below); the second step is assigning to
the loops respective currents I1, I2, . . . In, and expressing the
currents in resistors via these loop currents. The final steps
is expressing the second set of Kirchoff’s equations in terms of
resistors’ currents using the Ohm’s law, and solving this set of
equations with respect to the loop currents.

Let us illustrate the method and the concept of linearly inde-
pendent loops using the following problem.

pr 13. Determine the resistance between the output leads
of the circuit using the method of loop currents.

This problem can be solved using the idea 9 — and this is
possibly the simplest solution. However, here we provide its
solution using the idea 13. To begin with, we need one more
idea.
idea 14: If the task is to find the resistance of a circuit
between two leads, it is often useful to assume that either
a voltage V is applied to the leads, or a current I is driven
through these leads. Then we need to find the missing quant-
ity (I or V , respectively), and calculate R = V/I.

And so, we assume that a current I is driven through the cir-
cuit. Let us have a look on possible shapes of loop currents on
the figure below.

Let the blue loop be denoted by i1, red — by i2, green —
by i3, and violet — by i4. If we take the red and blue loop
currents with equal amplitude, they cancel out in the segment
passing through the 4-ohm resistance, hence their sum will be
equivalent to the green loop current. Therefore the green loop
current is linearly dependent on red and blue loop currents: out
of the three loop currents, only two can be kept as unknowns
(if we were keeping all the three loop currents, the number of
unknowns would be larger than the number of equations). It
doesn’t matter which pair of loop currents will be selected; let
us opt for i1 and i2. However, with just the red and blue loops,
we cannot obtain any current through the input leads, which
means that the system of loop current is not yet closed: we
need a loop passing through the input leads. Any shape of
such a loop would do; let us use the one depicted by the violet
curve (it can be thought to be closed via the external battery).
Let us note that i4 needs to be equal to I — to the current
driven through the circuit.

Now we have a full set of loop currents, i1, i2, and i4 = I,
and we need to write down the Kirchoff’s laws for the voltages.
The current through the 3 Ω-resistor is i1 + I, so its voltage is
V3 = 3 Ω(i1 + I); similarly V4 = 4 Ω(i1 − i2) (the minus corres-
ponds to the fact that the currents i1 and i2 are antiparallel
in this resistor), and V1 = 1 Ωi1. Please note that the signs
of these voltages have been taken corresponding to the blue
loop current: positive voltage value means that when moving
along the blue loop, the voltage decreases. According to the
Kirchoff’s laws, upon performing a full loop, the voltage drop
needs to be zero:
0 = V3 +V4 +V1 ⇒ 3(i1 +I)+4(i1 −i2)+i1 = 8i1 −4i2 +3I = 0.
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We can write down analogous equation for the red loop’s
voltage drop:

i2(2 + 4 + 5) − 4i1 + 2I = 0.
From the first Eq., 4i1 = 2i2 − 3

2I, substituting it into the
second Eq. leads us to 9i2 + 7

2I = 0, hence i2 = − 7
18I and

i1 = − 1
4 ( 7

9 + 3
2 )I = − 41

72I. Thus, V3 = (1 − 41
72 )I · 3 Ω =

93
72 Ω · I, and V2 = 22

18 Ω · I; the total voltage on the circuit
is V = V2 + V3 = 181

72 Ω · I, which means that the resistance
R = V/I = 181

72 Ω.
This has been quite a lot of algebraic work, and we would

like to be sure that we didn’t do any mistakes. The ab-
sence of mistakes can be easily checked by calculating V =
V1 + V5: we need to get the same result! Let us note that
V1 = −i1 · 1 Ω = 41

72 Ω · I and V5 = −i2 · 5 Ω = 35
18 Ω · I; therefore,

R = ( 41
72 + 35

18 )Ω = 181
72 Ω.

idea 15: The number of unknowns and the number of linear
equations can be reduced by using the method of poten-
tials, in which case the second set of Kirchoff’s equations is
automatically satisfied. The first step is assigning to each node
(connection point of wires) a potential φn (where the index n

refers to the n-th node). The second step is expressing the first
set of Kirchoff’s equations in terms of the potentials using the
Ohm’s law, and solving the obtained system of equations.

pr 14. Solve the previous problem using the method of
potentials.

Similarly to what we did before, we assume that the circuit
leads are attached to a battery. The reference level for po-
tential can be chosen arbitrarily, and thus it is convenient to
equate the potential of one output lead to zero (let it be the
left one); then the second lead’s potential equals to the battery
voltage V . There are two more nodes on the circuit, let the
respective potentials be φ1 (the upper one), and φ2. The cur-
rent to the upper node from the right wire I3 = (V − φ1)/3Ω;
the current from the upper node to the left wire I2 = φ1/2Ω;
the current from the upper node downwards I4 = (φ1 −φ2)/4Ω.
According to the Kirchoff’s law for currents, I3 = I2 +I4, hence

(V − φ1)/3Ω = φ1/2Ω + (φ1 − φ2)/4Ω ⇒
13φ1 − 3φ2 = 4V.

Similarly, for the lower node, I4 + I1 = I5, where I1 =
(V − φ2)/1Ω and I5 = φ2/5Ω. This leads us to

(φ1 − φ2)/4Ω + (V − φ2)/1Ω = φ2/5Ω ⇒
−5φ1 + 29φ2 = 20V.

Solving this linear system of equations results in φ1 = 88
181V and

φ1 = 140
181V ; total current can be calculated using the Kirchoff’s

law for the leftmost node, I = I2 + I5 = 44+28
181 V/Ω, hence

R = V/I = 181
72 Ω. The control of this result can be done by

calculating the total current on the basis of the rightmost node.
This example shows that the difficulty level of the both

methods (c.f. ideas 13 and 15) is approximately the same, so
the choice is typically based on personal preferences. In the
case of loop currents, selecting a good set of linearly independ-
ent loops may seem as an additional step in the solution, but

in the case of planar circuits (i.e. circuits which can be drawn
on a paper so that the wires don’t intersect and meet only at
the nodes), this step is not needed if we use a slight modific-
ation of the loop current method which will be referred to as
the streamfunction method.

The concept of streamfunction ψ(x, y) can be used for two-
dimensional incompressible flows in which case the streamlines
follow the lines of constant value ψ(x, y) = const, and the flow
flux12 between two isolines equals to the difference between the
respective values of ψ. In the case of a two-dimensional fluid
flow, the flow flux is the surface area which flows through a
cross-section within a unit time; in the case of electrical cur-
rent, the flow flux is the total electrical current which flows
through a cross-section. In the case of planar circuits, current
flows only along the wires and hence, the streamfunction is con-
stant between the wires, and jumps at the position of wires13.

idea 16: For planar circuits, instead of the method of loop
currents, the method of streamfunction can be used. Each
face (the empty area between wires) of the circuit is assigned a
streamfunction value: i-th face is assigned a value ψi which is
to be found using the Kirchoff’s voltage laws. The current in a
wire separating i-th and j-th face is found as Iij = ψi −ψj ; the
sign of Iij here is chosen so that if we move along the direction
of Iij , the i-th face remains to our left hand.

Now we can also draw an important conclusion regarding
the total number of linearly independent loops for planar cir-
cuits:
fact 8: The number of degrees of freedom (and hence, the
maximal number of linearly independent current loops) for the
current distribution in a planar circuit equals to the number of
faces in the corresponding graph (excluding the infinite face).

Indeed, the current distribution can be fully described by the
streamfunction values at the faces, and the infinite face can be
postulated to have ψ = 0, so the number of degrees of freedom
equals to the number of finite faces of the graph.

In order to illustrate the idea 16, let us consider, again, the
problem 13; the unknown values of streamfunction (ψ1 and ψ2)
are marked together with the corresponding currents in the fig-
ure below (as compared to problem 13, the resistance values
are changed). The set of Kirchoff’s voltage laws will be very
similar to what we obtained with the method of loop currents,
so we skip that part of the solution.

idea 17: Due to the symmetry of the Kirchoff’s voltage law
and current law, there is a duality between electrical currents
and voltages14 which means that we can interchange voltages
and currents, and we’ll obtain, as a result, a very similar prob-
lem. It works out most conveniently in the case of planar cir-

12For fluid flow, the fow flux is the amount of fluid carried through a cross-section per unit time; in the case of electric current, it is just the total
current.

13This statement is valid for non-planar circuits, as well, but then there will be faces for which the streamfunction value is not a free parameter (is
defined by the streamfunction values of the neighbouring faces) so that the application of the idea 16 would be less straightforward

14A. Russell 1904.
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cuits in which case voltage values transfer into streamfunction
values, and vice versa; the circuit itself is transferred into its
dual circuit (see below). Most often, we transfer one circuit
problem just into another circuit problem, but in the case of
self-dual circuits (when the circuit is identical to its dual cir-
cuit), the symmetry may prove to be very useful15.

Let us apply the concept of duality to the bridge-connection
drawn above; the dual circuit is obtained by putting one node
inside each face of the original circuit, and connecting the new
nodes with wires so that each old wire is crossed by exactly one
new wire, see below.

For our original circuit, we had a battery which kept the
voltage between the two ports equal to E , and in our new cir-
cuit, we have a current source which keeps the streamfunction
difference between the top and bottom nodes equal to I. When
using the node potential method with our old circuit, we had
each node ascribed a potential; now we have each node ascribed
a streamfunction value. For the old circuit, the unknown po-
tentials φi were found from the Kirchoff’s current laws written
for each node; for j-th node∑

i

(φi − φj)/Rij = 0,

where Rij is the resistance between the i-th and j-th nodes,
and the sum is taken over all those nodes which are directly
connected to the j-th node. For the new circuit, the unknown
streamfunction values ψi are to be found from the Kirchoff’s
voltage laws written for each new node; for j-th node∑

i

(ψi − ψj)Rij = 0,

where Rij is the resistance on that wire (of the old circuit)
which is intersected by a new circuit segment connecting the
i-th and j-th nodes, and the sum is taken over all those nodes
which are directly connected to the j-th node. We would ob-
tain exactly the same set of equations if we were considering
the new circuit as a usual resistor network with resistances be-
ing equal to the conductances of the old circuit (so that in the
figure above, the “resistance” of the “resistor” a is 1 Ω−1, the
“resistance” of the “resistor” b is 0.25 Ω−1, etc). This procedure
assumes also that the new “voltage” applied between the top
and bottom nodes of the new circuit is I, and the new total
“current” (the sum of “currents” in “resistors” a and b) equals
to the voltage difference E between the two ports of the old
circuit. Therefore, the “resistance” R⋆ of our dual circuit is
expressed as

R⋆ = I

E
≡ 1
R
,

where R is the total resistance of the old circuit (everything is
OK with the dimensionalities as both R⋆ and the component-
resistors of our dual circuit are measured in Ω−1).

To sum up, the procedure of using dual circuits to calculate
the resistance of a given circuit is as follows: build a dual cir-

cuit so that on each new circuit segment, there is a resistor the
“resistance” of which is equal to the conductance of the corres-
ponding old circuit segment (if the old circuit segment had a
battery, use now a current source). Calculate the “resistance”
of this dual circuit and take reciprocal to obtain the resistance
of the original circuit.

Note that the bridge connection considered above is topolo-
gically self-dual, because its dual circuit has the same structure
— is made of five “resistors” forming a bridge. Furthermore, the
numerical values of the resistors are such that if we multiply
all the “resistances” by the same factor (4 Ω2), the dual circuit
becomes identical to the original circuit; this is the property
which makes it a self-dual circuit.

pr 15. Find the resistance of the bridge connection illus-
trating the idea 16; use the idea 17 and the self-duality of this
bridge connection.

The simple bridge connection considered above is self-dual,
because its dual circuit is also a bridge connection of the same
type.

idea 18: Infinite periodic chains of electronic components
(resistors, capacitors etc) can be studied by making use of the
self-similarity of the chain: removal of the first period does not
change its properties.

pr 16. [IPhO-196716] Determine the resistance of the infin-
ite periodic circuit

R1

R2

According to the idea 18, we “cut off” the first period of the
infinite chain (painted in orange in the figure below); the re-
maining part (blue) is equivalent to the original circuit of (yet
unknown) resistance R. Because of that, we can write equality

R = R1 + RR2

R+R2
,

which can be solved with respect to R.

This idea can be combined with other ideas — for the next
problem, together with the idea 10.

pr 17. Determine the electromotive force and internal res-
istance of the following system of batteries.

R

r

E

idea 19: As soon as you detect a symmetry in a problem,
try exploit it.

15L.A. Zadeh 1951
16At the IPhO-1967, all resistors were equal to r
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The next problem can be solved exploiting its symmetry, in
conjunction with the idea 14.

pr 18. Determine the resistance between opposing corners
of a cube, the edges of which are made of wire, see figure; the
resistance of one edge is 1 Ω

Sometimes it is convenient to use this idea in conjunction
with specific algorithms how to reduce a circuit to a combina-
tion of parallel and series connections.

idea 20: Node-merging method: if two nodes have equal
potential (e.g. due to symmetry), they can be short-circuited.

idea 21: Edge-splitting method: a resistor between nodes
A and B can be represented as a parallel connection of two
resistors, and the node A can be split into two nodes, if the
potentials of the new nodes A′ and A′′ will be equal.

These ideas are illustrated with the following problem.

pr 19. An hexagon ABCDEF with six “spokes” (connect-
ing its centre O with the vertices) is made of 12 pieces of
wire, each having a electrical resistance R. Find the resistance
between the vertices A and O using methods 20 and 21.

idea 22: Non-symmetric problems can be sometimes conver-
ted into symmetric ones using superposition principle.

pr 20. Determine the resistance between two neighbouring
vertices A and B of an infinite square lattice assuming that the
edges of the lattice are made of wire, and the resistance of each
edge is R.

This problem does not possess enough symmetry to be solved
immediately: if we drive a current I into the vertex A and draw
it out from the vertex B, the geometry of the problem would
possesses only a mirror symmetry, which is not sufficient for
concluding how the current I is distributed between the four
wires connected to the input vertex. However, it is possible to
construct a rotationally symmetric problem: suppose that the
current I is driven into a vertex A and taken out symmetric-
ally at infinitely remote edges of the mesh. Then it is clear that
the current I is distributed equally between the four outgoing
wires: the current in each of them is I/4. Similarly, we can
drive the current in a rotationally symmetric way at infinity,
and draw it out from the vertex B. The superposition of these
two symmetric configurations provides exactly what we need:
the current is driven into A and drawn out from B; at the
infinitely remote edges, the current cancels out. In the wire
connecting A and B, the both superposition components have
the same direction and are equal to I/4, hence the net current

is I/2, which corresponds to the voltage V = RI/2. Therefore,
the resistance r = V/I = R/2.

It appears that such a symmetrization technique can be also
applied to finite lattices, see the next problem.

pr 21. Determine the resistance between two neighbouring
vertices of a dodecahedron (see figure), the edges of which are
made of wire; the resistance of each edge is R.

idea 23: Sometimes the problem symmetrization can be
achieved by introducing fictitious negative resistances: there
is no problem with applying Kirchoff’s laws to negative resist-
ances.17 In particular, R and −R in parallel correspond to an
infinite resistance, and in series — to a zero resistance.

pr 22. Determine the resistance between two neighbouring
vertices A and B of a dodecahedron, the edges of which are
made of wire; the resistance of each edge is R, except for the
edge connecting the vertices A and B, which is cut off.

idea 24: If there are nonlinear resistors included into a cir-
cuit which are characterized with a nonlinear current-voltage
dependence I(V ) then the current through the nonlinear ele-
ment can be found graphically: I–V -dependence can be also
expressed using the Kirchoff’s laws, in simpler cases this will
be a linear law V = U0 − Ir. Then, the solution will be the
intersection point of the two curves, U0 − Ir and I(V ).

Solutions (intersection points) in the negative differential res-
istance range (where Rdiff ≡ dV

dI < 0) can be unstable; stability
analysis requires knowledge about inductors, and so we post-
pone it accordingly.
fact 9: If there is more than one stable solution then the
question of which solution is actually realized is resolved based
on the history (e.g. if the voltage applied to the circuit has
been increased or decreased) because internally, nonlinear ele-
ments obey inertia (for instance, the density of charge carriers
can change fast, but not instantaneously) and it will not jump
from one equilibrium state to another without a good reason
(such as a loss of stability or disappearance of the current solu-
tion branch).

Let us illustrate the idea 24 on the basis of a tunnel diode
connected via a resistor to a battery of variable electromotive
force E .

17Care should be taken only with oscillatory circuits which include also inductors and capacitors: positive resistance corresponds to a dissipation
(decay of oscillations), negative resistance can cause instability (growth of oscillations).
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If E is small, there is only one intersection point (the leftmost
blue dot in figure); if E is increased, the intersection point
moves up, and even though at a certain moment, there are
more than one intersection points, the real current and voltage
correspond to the leftmost intersection point as a continuous
evolution of the original solution. When E is further increased,
at a certain moment, this solution disappears and the solu-
tion is forced to jump rightwards as shown in figure by blue
almost horizontal arrow. Now, if E starts decreasing, the inter-
section point depicting the solution moves continuously down
and during the period when there are three intersection points,
the rightmost one will correspond to the real solution. If E is
further decreased, that intersection point disappears, and the
solution jumps back to the only remaining intersection point.

The phenomenon when the system state depends on its his-
tory is called hysteresis. Hysteresis will typically appear if the
system can have more than one internal states; a simple ex-
ample is provided by the following problem.

pr 23. [EstOPhC-2009] Element X in the circuit below has
a resistance RX which depends on the voltage VX on it: for
VX ≤ 1 V, RX = 1 Ω, and for VX > 1 V, RX = 2 Ω. Three such
elements are connected with an ideal ammeter as shown below;
the voltage on the leads of the circuit varies in time as shown
in the graph. Plot the reading of the ammeter as a function of
time.

This problem is otherwise quite simple, but for certain
voltages, the state of circuit’s components will depend on the
history. Here a typical mistake is solving the problem cor-
rectly for the first 10 seconds, and then assuming a mirror-
symmetrical graph for the current. How to avoid such mis-
takes? The first and the best way is to always avoid rushed
extrapolations (in the given case — mirror-extrapolation of the
first 10 seconds to the next 10 seconds). Another way to figure
out that things are not as simple as they seem is formulated as
an idea.

idea 25: Try to think, what was the reasoning of the author
of the problem. In particular, if an Olympiad problem has
seemingly similar questions, there is typically some essential
difference. (As an exception, this is not a physical idea.)

In the given case, would it have been interesting to ask about
the next 10 seconds if you can obtain the result by a simple
mirror-extrapolation?

Returning to the idea 24, a simple illustration is provided
by the next problem.

pr 24. Find the current in the circuit given below; the I(V )
dependence of the diode is shown in graph.

idea 26: In the case of a small variation of the voltage
Ṽ ≡ V − V0 on a nonlinear element, and a small current vari-
ation Ĩ ≡ I−I0 through it, one can linearize the V −I curve as
Ṽ = RdiffĨ, where Rdiff = dV

dI is referred to as the differential
resistance. Here, V0 and I0 are the unperturbed (equilibrium)
values of the voltage and current. Then, the total voltage on
the nonlinear element V = V0 +RdiffĨ. Now, if we write down
the Kirhoff’s voltage law in terms of the current variation Ĩ, in
addition to the “Ohm’s law” for the voltage variation RdiffĨ, we
have additional constant term V0 which can be inerpreted as
an effective electromotive force. On any linear resistor R, the
voltage is also a sum of a constant term I0R and the variation
term RĨ. All the unperturbed constant terms together must
cancel out from the Kirchoff’s voltage law because V0 and I0
were assumed to be valid solutions of the Kirchoff’s laws. In-
deed, if we put all the perturbations equal to zero then Ĩ = 0
and Ṽ = 0 should provide a solution to the Kirchoff’s laws,
hence all the constant must cancel out.

To sum up, instead of studying voltages and currents, we study
the perturbations Ṽ and Ĩ of these quantities; the effective cir-
cuit describing the perturbed values is obtained by removing all
the unperturbed voltage and current sources (such as batteries
of constant electromotive force), and by substituting nonlinear
elements with their differential resistances. NB! The differen-
tial resistances of a nonlinear element depends on the current;
we need to use its unperturbed value.

The usefulness of this idea is demonstrated by the following
problem.

pr 25. [EstFin-200318] In the figure below, the circuit of a
simple tunnel-diode-based amplifier is given. Find the ampli-
fication factor for small-amplitude input signals using the fol-
lowing values: R = 10 Ω, E = 0.25 V.

idea 27: It is possible to obtain upper and lower limits for
the resistance of a circuit using the following theorems.

(I) For an arbitrary circuit which consists of resistors and has
two leads, A and B, if a current I is driven into the lead A

18Only a part of the full problem
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and out from the lead B, the current distributes between the
resistors of the circuit so as to minimize the overall power dis-
sipation. In other words, the power dissipation of the actual
current distribution is always smaller as compared to any ficti-
tious current distribution satisfying only the Kirchoff’s law of
currents. 19

(II) For the same circuit, if there is a voltage drop V between
the leads A and B, the voltage distributes between the nodes of
the circuit so as to minimize the overall power dissipation. In
other words, the power dissipation of the actual voltage distri-
bution is always smaller as compared to any fictitious voltage
distribution violating the Kirchoff’s law of currents. 20

Particular conclusions of these theorems are: cutting off a wire
will increase the resistance, and short-circuiting a wire will de-
crease the resistance. Indeed, if we cut a wire, we disable the
respective current and this leads to what can be considered as
a fictitious current distribution, which has an increased overall
power dissipation I2R, and hence, an increased net resistance
R. Similarly, short-circuiting makes it possible for the current
to jump between the nodes — something which was impossible
originally and violates the Kirchoff’s laws of currents for the
original circuit. Hence, the power dissipation in the modified
circuit V 2/R is increased, and consequently, the resistance R
is decreased.

pr 26. There is an octagon all diagonals of which are res-
istors of equal resistance R; the sides of the octagon are made
of an insulating material. Find lower and upper bounds for the
resistance between two neighbouring nodes of such an octagon.

The solution here is as follows. First, we cut off several resist-
ances, and leave only those which are shown in the left figure
below. The resistance of the left circuit is 2R

4 = R
2 . Further, we

short-circuit six nodes as shown in the right figure; the resist-
ance is 2 R

5 = 0.4R. So, we can conclude that 0.4R ≤ r ≤ 0.5R.
Since the wires we cut off did have current, and the nodes which
we connected with wires did have a voltage difference, the new
current- and voltage distributions are sub-optimal and we can
exclude equality signs: 0.4R < R < 0.5R

pr 27. Improve the upper bound r < 0.5R for the previ-
ous problem (do not “cut off” as many wires as we did before),
as well as the lower bound (short-circuit a lesser number of
nodes).

Finally, let us consider circuits including ideal diodes.
idea 28: If there are ideal diodes included into the circuit
(which have zero resistance for forward current, and infinite

resistance for reverse current), you need to consider separately
two cases: (a) assume that there is a forward current and the
diode is open, hence it can be substituted by a wire; (b) assume
that there is a reverse current, and hence, it can be “cut off”.
Depending on the problem, it may be apparent, which option
is to be used, or you may need to use the calculation results to
verify, which assumption was valid 21.

pr 28. How many times will change the power dissipation
in the resistor A when the polarity of the battery is reversed?
All the resistors have equal resistance. Diodes are ideal.

idea 29: Non-ideal diodes which are approximated with
an idealized V − I curve with a non-zero opening voltage Vc

(there is no current for V < Vc, and for any forward current,
V = Vc) ca be also handled according to the idea 28; the only
difference is that for forward currents, diode needs to be re-
placed by a battery with emf. E = Vc. Additionally, the power
dissipation on the diode is calculated in the same way as the
work done by a battery: dissipation power is VcI, and the dis-
sipated heat — Vc∆Q, where ∆Q is the charge passing through
the diode.

Note that this idea can be made even more general: if we ap-
proximate a certain nonlinear V − I curve with a curve which
consists of n pieces of straight line segments (piece-wise linear
graph) then we need to consider separately n cases; for each
case, the non-linear element can be substituted by a battery
the internal resistance of which is equal to the slope dV

dI ≡ r of
the corresponding straight line segment, and the electromotive
force is equal to the V -intercept of that line. Instead of a bat-
tery, sometimes it is better to use a current source connected
in parallel to the internal resistance r and supplying a current
equal to the I-intercept of the graph segment; use this method
in particular when r = ∞.

pr 29. [EstOPhC-2012] Find the power dissipation on each
of the diodes in the figure below. These diodes open at the
forward voltage V0 = 1.0 V. It can be assumed that the diode
voltage remains equal to V0 for any forward current, and that
for voltages less than V0, there is no current through the diode.
The values of the resistances and of the electromotive force are
given in the figure.

19Proof is provided in the appendix 3, page 15.
20Proof is also provided in the appendix 3.
21This is similar to the problems with dry friction between solid bodies when you consider separately the cases when (a) the bodies splip and there

is a friction force defined by the kinetic coefficient of friction, and (b) the bodies don’t slip.
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Problems involving ideas 1–28
pr 30. Determine the maximal power which can be dissip-

ated on a load connected to the leads of the circuit.

pr 31. Find the current through the diode in the circuit
given below; for the diode, use the I(V ) dependence from the
problem 24.

pr 32. For an overcurrent protection, there are two fuses
connected in parallel: fuse A has resistance RA = 1 Ω and
maximal current (by which it melts) IAmax = 1 A; fuse B

has resistance RB = 2 Ω and maximal current (by which it
melts) IBmax = 1.2 A. What is the maximal total current for
such a system of fuses? What is the total current when the
fuse B is substituted with a fuse C which has RC = 2 Ω and
ICmax = 1.7 A?

pr 33. The two voltmeters in the circuit below are identical;
their readings are V1 = 30 V and V2 = 20 V. The reading of
the ammeter is I = 750 µA. All the five resistors have equal
resistance R; find the numerical value of R.

pr 34. Assuming that the resistance of a light bulb’s wire is
proportional to its temperature T and its heat radiation power
is proportional to T 4, find the power law exponent of its V –I
dependence. Neglect the heat conductivity and assume that T
is much higher than the room temperature.

pr 35. [EstPhO-1999] All the resistors have equal resist-
ance R = 1 Ω Ammeters and the battery are ideal, E = 1 V.
Determine the readings of all the ammeters.

pr 36. Find the reading of the ammeter in the circuit below.
1Ω

1Ω2Ω3Ω

2Ω 3Ω

2Ω 2Ω

8V

A

pr 37. The drawing below depicts octahedron made from
wire; the number near to each edge shows the resistance of the
corresponding wire in ohms. The resistance of the wires con-
necting the ammeters are negligibly small. Find the readings
of the ammeters.

pr 38. In the figure, all three voltmeters are identical,
and all three resistors are identical. The first voltmeter shows
V1 = 10 V, the third — V3 = 8 V. What does show the second?

pr 39. Determine the potential of the lead A. (Note that
the ground potential is always assumed to be 0.)

pr 40. In the circuit below, the “device” takes the read-
ing of the ammeter and adjusts the resistance of the rheo-
stat so that the ammeter reading becomes zero. Find the
voltage on the resistance R3. It is known that V = 5 V,
R1 = 10 Ω,R2 = 1 kΩ, R3 = 100 kΩ, R4 = 4.99 kΩ.

pr 41. Eight identical lamps of nominal voltage V = 4 V
and nominal current I = 0.25 A are connected to a battery via
a resistor as shown in figure. The resistor is such that the lamps
will operate at the nominal regime (with nominal voltage and
current). One of the lamp burns out (the lamp is essentially re-
moved). How many times does change the overall power which
is dissipated by the lamps? (The power dissipation on the res-
istor is NOT included.) Neglect the dependence of the lamp
resistances on the temperature.

pr 42. The figure below depicts a cube, the edges of which
(blue lines) are made of a resistive wire, so that the resistance
of each edge is R = 1 kΩ. The ammeters are connected with
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copper wires of negligible resistance to the vertices of the cube.
The battery voltage is E = 9 V; the wires make electrical con-
tact only at the vertices of the cube. Find the readings of the
ammeters.

pr 43. Four ammeters with identical internal resistances r
and a resistor of resistance R are connected to a current source
as shown in figure. It is known that the reading of the ammeter
A1 is I1 = 3 A and the reading of the ammeter A2 is I2 = 5 A.
Determine the ratio of the resistances R/r.

pr 44. How many times does change the current through
the battery if the polarity of the battery is reversed? All the
resistors are identical, diodes are ideal and internal resistance
of the battery is negligible.

pr 45. Determine the resistance between two neighbouring
nodes A and B of an infinite cubic lattice assuming that the
edges of the lattice are made of wire, and the resistance of each
edge is R.

pr 46. There is an infinite honeycomb lattice; the edges of
the lattice are made of wire, and the resistance of each edge is
R. Let us denote two neighbouring vertices of a vertex B by A
and C. Determine the resistance between A and C.

pr 47. There is an infinite triangular lattice; the edges of
the lattice are made of wire, and the resistance of each edge is
R. Let us denote the corners of a triangular lattice face by A,
B, and C. The wire connecting B and C is cut off. Determine
the resistance between A and B.

pr 48. There is a n-gon all sides and all diagonals of which

are resistors of equal resistance R. What is the resistance
between two neighbouring nodes of the n-gon?

pr 49. There is a decagon all sides and all diagonals of
which are resistors of equal resistance R; let A and C denote
the two neighbours of a vertex B, and let D be a vertex which
is not neighbouring any of the three mentioned vertices. The
wires corresponding to the sides AB and BC are cut off. De-
termine the resistance between A and D.

pr 50. There is an octagon all diagonals of which are res-
istors of equal resistance R; the sides of the octagon are made
of an insulating material. Find lower and upper bounds for
the resistance between two opposing nodes of such an octagon
without exactly calculating its value. Verify the result by cal-
culating this resistance also exactly.

pr 51. Find the resistance between the terminals A and B
for the infinite chain shown below. The resistances are as shown
and increase by a factor of two for each consecutive link.

pr 52. Find the voltage between the terminals A and B for
the infinite chain shown below.

R R R

r r r

E E E

pr 53. Which unequalities must be valid for the resist-
ance between two neighbouring vertices A and B of an infinite
square lattice, if the edges of the lattice were made of wire so
that the resistance of each edge was R, but some parts of the
lattice have been damaged: some wires have been broken and
some of the broken wires have been replaced by copper wires of
negligible resistance. However, within the distance of two edge
lengths from the wire AB, the lattice is completely intact (this
includes 13 wires parallel to AB, and 12 wires perpendicular
to it).

pr 54. A wheel circuit is a circuit which can be drawn as
a regular n-gon so that the rim of the “wheel” is formed by
n resitors of resistance R connecting neighboring vertices of
the n-gon, and the “spokes” of the “wheel” are formed by n

resistors of resistance r connecting the centre of the “wheel”
with each of the vertices. Let R1 be the resistance between
two neighbouring vertices of such “wheel”, and R2 — the res-
istance between one of the vertices and the centre. Express R1
in terms of R2, R and r (without using n).

appendix 1: Proof of the Y − ∆ circuit theorem
Two circuits, one with ports A,B,C, and the other with ports

a, b, c are equivalent if their response to external forcing is

identical. This means that if we drive a current I into the
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lead A (or into a) and drive it out from B (or from b),

the lead voltages must be pair-wise equal: VAB = Vab, and

VAC = Vac. Due to the linear nature of the Kircho�'s and

Ohm's laws, we know that all these voltages are proportional

to the current: VAB = IRAB , Vab = IRab, VAC = IRACB , and

Vac = IRacb, where RAB is the resistance between A and B,

RAC is the A− C resistance. Proportionality coe�cients Rijk

(i, j, k ∈ {A,B,C, a, b, c}) relate the i − k-voltage to the i − j

current. Equivalence of the circuits means that

RAB = Rab, RAC = Rac, RBC = Rbc, (3)

RACB = Rabc, RABC = Rabc, RBCA = Rbca, etc. (4)
These 9 equations represent necessary and su�cient condi-

tions for the equivalence between an arbitrary 3-lead circuit

(with leads A,B,C) and a Y -connection (or a ∆-connection)

of three resistors. Nine equations seems to be too many for

determining the values of the three resistances. Luckily, it

appears that if the �rst three equations (3) are satis�ed, all

the rest are satis�ed automatically. It is (relatively) easy to

verify via direct arithmetical calculations that for any triplet

of resistances RAB , RAC , and RBC , these three equations

can always be solved with respect to the three resistances

of the Y - or ∆-connection, and as long as the triangle in-

equalities of the form RAB ≤ RAC + RBC are satis�ed, the

three resistances (of Y or ∆-connection) are non-negative. In-

deed, for Y -connection, Rab = ra + rb, Rac = ra + rc, and

Rbc = rb + rc; if we put these expressions into Eqns. (3), we

obtain ra = 1
2 (RAB +RAC −RBC), and analogous expressions

for rb and rc. The calculations for ∆-connection are analogous

[alternatively, Eq. (2) can be used to �nd the ∆-connection-

resistances from ra, rb and rc]. It appears that the triangle

inequalities are, indeed, satis�ed for any three-lead circuit, see

appendix 4 below.

What is left to do is to show that the equations (4) dealing

with the three-lead-resistances follow from the equations (3).

First, from the Kircho�'s voltage law we can conclude that

RACB +RCAB = RAC (and similar expressions for RCBA and

RBAC). Indeed, if a current I is driven into A and taken

out from C, we can express the voltages as VAC = IRAC ,

VAB = IRACB , and VBC = IRCAB ; due to the Kircho�'s

voltage law, VAC = VAB + VBC , hence RAC = RACB +RCAB .

Second, the equality RACB = RABC (and similar expressions

for RCBA and RBAC) follows directly from the reciprocity the-

orem22; however, this theorem is more tricky to prove, see ap-

pendix 2.

appendix 2: Proof of the reciprocity theorem
The theorem states that if we have a four-lead system of resist-

ors, the leads being denoted by A, B,C,and D, and we consider

two cases, (i) current I is driven into A and out from B, and (ii)

the same current I is driven into C and out from D, then the

voltage VCD induced between C and D in the �rst case equals

to the voltage UAB between A and B in the second case (the

equality required for the proof of the Y − ∆ circuit theorem

corresponds to the particular case when D coincides with A).

Let us denote the potential of the j-th node of the circuit in

the �rst case by φj (j = 1, . . . n), and in the second case by

ψj ; the �rst four nodes (j = 1, 2, 3, 4) are the four input leads

A,B,C, and D. Due to Ohm's law, for any pair of nodes (i, j)

directly connected by a wire (over a resistor), there is equality

(φj − φi)/Iji = (ψj − ψi)/Jji,

where Iji and Jji are the wire's currents in the �rst and the

second case, respectively. This can be rewritten as

(φj − φi)Jji = (ψj − ψi)Iji;
Summing this equality over all the node pairs we obtain∑

j

φj

∑
i

Jji −
∑

i

φi

∑
j

Jji =
∑

j

ψj

∑
i

Iji −
∑

i

ψi

∑
j

Iji.

Note that due to the Kircho�'s current law, for any j ̸= 3, 4,∑
i Jji = 0; similarly, for j ̸= 1, 2,

∑
i Iji = 0; for i ̸= 3, 4,∑

j Jji = 0; for i ̸= 1, 2
∑

j Iji = 0. Further,
∑

i J4i =
−
∑

i J3i =
∑

i I2i = −
∑

i I1i = −
∑

j Jj4 =
∑

j Jj4 =
−
∑

j Ij2 =
∑

j I1i = I. Therefore, the above equality sim-

pli�es into

2(φ4 − φ3)I = 2(ψ2 − ψ1)I.
Finally, as φ4 −φ3 = V and ψ2 −ψ1 = U , we arrive at V = U ,

QED.

There is one quite difficult problem which can be solved in
a somewhat similar manner to how we proved the reciprocity
theorem. We might also try to formulate a respective hint.
idea 30: Sometimes it is possible to combine the equations
of a long system of equations so that almost everything cancels
out, leaving only few non-zero terms.

pr 55. m identical resistors of resitance R are connected
in an arbitrary way; though, none of the resistors is short-
circuited (there is no direct wire connection between the two
leads of a resistor), and all the resistors are connected together
(the resistance between any pair of nodes is finite). Overall,
this resistor network has n nodes For each resistor, the resist-
ance between the adjacent nodes (to which it is connected) is
determined, and the results are added up. Show that this sum
of m resistances equals always to (n− 1)R.23

appendix 3: Proof of the dissipation minimum the-
orem
In order to prove the �rst part (when the Kircho�'s voltage

law remains satis�ed), consider the power dissipation

P =
∑

ij

(φi − φj)2/Rij ,

where φi is the potential of the i-th node (for a �ctitious po-

tential distribution), and the sum is taken over all such pairs

of nodes (i, j) which are directly connected via a resistor Rij .

If the potential of the i-th node is changed by a small incre-

ment ∆φi (while keeping the other potentials intact), the total

power dissipation is changed by

∆P =
∑

j

[2∆φi(φi − φj) + ∆φ2
i ]/Rij .

The last term here can be neglected for very small potential

increments, and we can denote (φi − φj)/Rij ≡ Iij : this is

22H.A. Lorentz, 1896
23The theorem can be generalized: the resistors are different, each term in the sum is divided by the resistance of the respective resistor, the sum

equals to n − 1.
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the current �owing from i-th to j-th node. So, at the limit of

in�nitesimally small increments (∆φi → dφi), we obtain

dP = 2dφi

∑
j

Iij .

If
∑

j Iij > 0 then the power dissipation can be decreased by

increasing the potential φi (dφi < 0 leads to dP > 0); simil-

arly, if
∑

j Iij < 0, we can take dφi > 0. So, the dissipation

minimum can take place only for
∑

j Iij = 0, i.e. when the

Kircho�'s current law is satis�ed. Further, if
∑

j Iij = 0 then

∆P =
∑

j ∆φ2
i /Rij > 0, i.e. we have, indeed, a minimum.

The second half of the theorem is proved in the same way as

the �rst half: we assume that there is a �ctitious current distri-

bution which satis�es the Kircho�'s current law and hence, can

be represented as a sum of loop currents Iµ =
∑

ν Iνµ, where ν

enumerates the loops and Iνµ represents the current in a µ-th

wire contributed by the ν-th loop. Note that Iνµ = 0 if the µ-th

wire does not belong to the ν-th loop; otherwise Iνµ = ±iν �

the loop current has the same magnitude everywhere, and the

sign of the contribution depends on which current direction is

assumed to be positive for the given wire. Let us assume that

all the contributions of the ν-th loop current are positive (if not,

we can re-de�ne the positive directions of the relevant wires).

Then

P =
∑

µ

Rµ

(∑
ν

Iνµ

)2

,

and for an increment diν of the ν-th loop current,

dP = diν · 2
∑

µ

IµRµ;

for a minimum, we need to have
∑

µ IµRµ = 0, which is the

Kircho�'s voltage law for the ν-th loop.

appendix 4: Proof of the triangle inequality
For a three-lead circuit, let us ground the lead A. (i) First, let

us connect the lead C to a voltage source providing a potential

V0 > 0 while keeping the lead B disconnected externally; this

gives rise to a certain current I0 which �ows from C through

the circuit and through the lead A into the grounding wire; this

will also induce a certain potential V1 on the lead B; apparently

0 ≤ V1 ≤ V0.

(ii) Second, let us disconnect C from the voltage source and

connect B to a voltage source providing the same potential V1
what it had previously; this gives rise to a current I1 via A

and B, and an induced potential V2 on the lead C. Now, let

us apply the minimal power dissipation theorem. For case (ii),

we construct a �ctitious potential distribution based on the po-

tential distribution of case (i): all these internal circuit points

which have potential φ less than V1 will have the same poten-

tial which they had previously, and all those internal circuit

points which have φ ≥ V1 will have potential V1 (if a certain

resistor extends over the threshold potential V1, we imagine

the resistor as if being made of a resistive wire and �cut� this

wire into two segments at the point where φ = V1). Such a

�ctitious potential distribution would be the real potential dis-

tribution of a mod�ed circuit for which all the circuit points

with potential φ = V1 are connected via a wire to the lead B.

Indeed, there is no change in the region φ ≤ V1 as compared

to the case (i), which means that the Kircho�'s current law is

satis�ed there; in the region which had originally φ > V1, the

potential is now constant, hence there is no current, hence the

Kircho�'s current law is also satis�ed. All the threshold points

φ = V1 are connected by a wire which directs all the total

current I0 into the lead B so that the Kircho�'s current law

remains still satis�ed. For such a modi�ed circuit, the power

dissipation is V1I0; due to the power dissipation theorem, this

is larger or equal to the actual dissipation V1I1, hence I1 ≤ I0.

Finally, let us introduce case (iii): we disconnect A from the

ground, and connect B and C to the voltage sources which

provide potentials V1 and V2, respectively. Analogously to

what we did before, we can show that the emerging current

I2 ≤ I0 (through B and C). Now we can write inequalities for

the resistances:

RAB = V1

I1
≥ V1

I0
, RBC = V0 − V1

I1
≥ V0 − V1

I0
;

if we sum up these inequalities we obtain

RAB +RBC ≥ V1

I0
+ V0 − V1

I0
= V0

I1
= RAC ,

QED.

Note that owing to the triangle inequalities, the resistance can

be used to de�ne the distance between two circuit points (or

between two points of a continuous conducting medium); then,

instead of meters, the distance will be characterized in ohms.

2 Circuits including capacitors and inductances
In order to be able to solve circuits involving capacitors and
inductances, the knowledge of several facts is needed. Some
facts will be provided here without proof; more insight will be
given in the section “Electromagnetism’.

Let us begin with capacitors. A capacitor can be thought
of as consisting of two parallel conducting sheets (plates) which
are very close to each other, and separated by a thin dielectric
(insulating) layer 24. We mentioned in the introduction of Sec-
tion 1 that typically, we can neglect charges on the wires; this
is because any non-negligible charge on wires would give rise
to a huge electric field, and hence, to a huge voltage. How-
ever, situation is different if we have two parallel conducting
plates: if these two plates have equal and opposite charges,
so that the system as a whole is electrically neutral, the huge
electric field is constrained into the narrow layer between the
plates, hence the voltage (the product of the layer thickness
and field strength) can remain moderate. Typically 25, the
voltage between the plates is proportional to the charge sitting
on one of the plates. Since a capacitor is electrically neutral as
a whole, the Kirchoff’s current law remains valid for capacitors,
as well: current flowing along a wire to one plate (increasing
the charge there) equals to the current flowing from the other
plate (decreasing the charge there) along another wire.

fact 10: Capacitance is defined as
C = q/V,

where q is the charge on the plates of the capacitor (one plate
has +q, the other one −q) and V is the potential difference

24There are different types of capacitors with different shapes, but such details are not important for the time being.
25if the inter-plate distance and the dielectric permeability of the insulator remain constant

— page 16 —



2. CIRCUITS INCLUDING CAPACITORS AND INDUCTANCES

between the plates of the capacitor. Unless otherwise men-
tioned, C is independent of the applied voltage V .

fact 11: The energy of a charged capacitor is
W = CV 2/2.

Indeed, consider a charging of a capacitor. If a charge dq crosses
a potential difference V , electrical work dA = V I · dt = V · dq
needs to be done. So, the total work done A =

∫ V

0 V · dq =∫ V

0 V · d(CV ) = C
∫ V

0 V dV = CV 2/2.

fact 12: The voltage on a capacitor cannot change moment-
arily, because a momentary change of the charge would require
an infinite current; the characteristic time of the voltage change
(with which the voltage will relax towards its equilibrium value)
is

τ = CR,

where R is the net resistance of the circuit connected to the
capacitor’s leads.

Indeed, consider a capacitor with voltage V , the leads of which
are attached to a resistance R. According to Kirchoff’s laws,
Rdq

dt + q
C = 0, hence

dq
q

= − dt
CR

⇒ ln q − ln q0 = − t

CR
⇒ q = q0e−t/RC .

Here, − ln q0 serves as an integration constant.
fact 13: In a simple R − C-circuit, charge (and voltage)
on the capacitor, as well as the current decay exponentially,
∝ e−t/τ .

Now, let us consider inductors. In the section “Electro-
magnetism’ we’ll learn that similarly to how electrical charges
give rise to an electric field, currents (moving charges) give rise
to a magnetic field, which is characterized by magnetic induc-
tion B (also referred to as the magnetic B-field). We’ll need
also the concept of magnetic flux Φ, which can be interpreted
intuitively (and loosely) as the number of magnetic field lines
passing through a closed (possibly fictitious) loop; in the case
of an homogeneous magnetic field perpendicular to the loop,
Φ = BS, where S is the surface area of the loop. The import-
ance of the concept of magnetic flux lies in the fact that if it
changes in time, an emf. is created in the loop (circuit), see
below.

So, any current in a circuit gives rise to a magnetic field,
which, in its turn, will cause a magnetic flux passing through
that electric circuit. Typically, however, that flux is relatively
small so that the emf. caused by it can be neglected. In order
to create a larger flux, coils (inductors) are used. Increasing the
number N of overlapping wire loops has two-fold effect: first,
the current in the circuit will pass N times parallel to itself,
giving rise to a N -fold increase of the magnetic field; second,
the magnetic field lines pass now the circuit N times, giving
rise to another factor N for the magnetic flux.

fact 14: Self-inductance of an inductor (often called just
“inductance”) is defined as

L = Φ/I,

where I is the current flowing through the inductor, and Φ is
the magnetic flux created by that current passing through the
inductor itself 26. Unless otherwise noted, the inductance may
be assumed to be independent of current 27.

fact 15: Electromotive force created in a circuit due to
changing magnetic field

E = −dΦ/dt,
where Φ is the magnetic flux through the circuit. If Φ is created
by the self-inductance effect in an inductor, we obtain

E = −LdI/dt.
The minus sign refers to the fact that this electromotive force
tries to oppose the current change.

fact 16: The energy stored in an inductor
W = LI2/2.

Indeed, consider the electrical work needed to create a current
in an inductance: A =

∫
E · dq =

∫
E · Idt =

∫
LdI

dt · Idt =
L
∫
IdI = LI2/2.

fact 17: The current through an inductance cannot change
momentarily, because this would cause an infinite electromot-
ive force; the characteristic time of the current change (with
which the current will relax towards its equilibrium value) is

τ = L/R,

where R is the net resistance of the circuit connected to the
inductance leads.

Indeed, consider an inductance with current I, the leads of
which are attached to a resistance R. According to Kirchoff’s
laws, RI + LdI

dt = 0, hence
dI

I
= −Rdt

L
⇒ ln I − ln I0 = −Rt

L
⇒ I = I0e−Rt/L.

Here, − ln I0 serves as an integration constant.
fact 18: In a simple L − R-circuit, inductor current (and
voltage) decays exponentially, ∝ e−t/τ .

With this result, we are finally ready to return to the prob-
lem of stability of circuits with nonlinear elements obeying neg-
ative differential resistance, cf. idea 24 and fact 9.
idea 31: When you are asked to perform a stability analysis,
keep in mind that
(a) the most standard way of doing it is by assuming that the
departure from a stationary state is very small, hence the idea
26 can be applied, i.e. all the nonlinear dependences can be
linearized28;
(b) the system needs to involve inertia which, in the case of cir-
cuits, is most typically provided by inductance: every wire has
a non-zero inductance (a very rough rule is that one millimetre
of wire length contributes 0.5 nH to the overall inductance). In-
troduction of inductance may not be needed for systems with
capacitors which already obey inertia of capacitor charge (and
hence, of capacitor voltage).
(c) the linearized differential equation may have more than one
solution; the system as a whole is stable if none of the solutions

26One can also speak about the inductance of simple circuit wires: although the inductance of simple wires is small, there are applications where it
cannot be neglected

27However, in the case of inductors with ferromagnetic coils, there is an essential non-linearity: the inductance will decrease with increasing current.
28Alternatively, conservation laws can be studied, cf. http://www.ipho2012.ee/physicscup/physics-solvers-mosaic/1-minimum-or-maximum/
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is unstable (if there is even one unstable solution, its exponen-
tial growth would lead to an eventual departure of the system
from the equilibrium state).

pr 56. Consider a tunnel diode which is connected in series
with a resistance R to a battery (for a typical V − I-curve of
a tunnel diode, see problem 25). Let the parameters of the
system be such that there is a stationary state at such diode
voltage that diode’s differential resistance Rdiff ≡ dV

dI is negat-
ive. Under which condition will this state be stable?

The answer of this problem has an interesting implication.
Indeed, suppose we try to measure the V-I-curve of a tunnel
diode; we would use the same circuit as in the case of this prob-
lem (with the addition of an ammeter), but according to the
results this problem, the state with Rdiff < 0 would be either
unstable or cannot be reached due to fact 9. If that is so then
how can we measure the full V − I-curve? It appears that for
this purpose, the tunnel diode can be stabilized if a suitably
selected capacitor and resistor are connected in parallel to the
diode. In that case, the stability analysis becomes more com-
plicated; then, the most efficient approach makes use few more
ideas and therefore the corresponding problem is considered at
the very end of the booklet (see problem 82).

idea 32: Energy conservation law can be used to calculate
heat dissipation. In addition to capacitors’ and inductances’
energies (c.f. facts 11 and 16), the work done by electromotive
force needs to be taken into account: A =

∫
EI · dt =

∫
Edq; if

E is constant, this simplifies into

A = E · δq,
where δq is the charge passing through the electromotive force.

idea 33: If a battery is connected in series to a capacitor,
the charge passing through the battery can be found as the
change of charge on a plate of the capacitor:

δq = C · δV,
where δV is the change of the capacitor’s voltage.

pr 57. A capacitor of capacitance C is charged using a bat-
tery of electromotive force E . Find the heat dissipated during
the charging process (either via a spark or in the wires or in
the battery due to (internal) resistance.

This is a very simple problem which we solve here to show
the procedure. During the charging process, a plate of the
capacitor obtains charge q; this charge necessarily needs to
come through the battery, hence the work done by the battery
A = qE = CE2. Part of this work is accumulated as the poten-
tial energy of the capacitor, W = CE2/2; the rest is dissipated
as a heat, Q = A−W = CE2/2.

pr 58. A capacitor of capacitance C is charged so that its
voltage is V0. The capacitor is discharged on a series connec-
tion of a diode and resistor R. Assume that the following graph
provides a good approximation for the V –I dependence of the
diode and that the capacitor is discharged down to the voltage
Vd . Find the amount of heat which is dissipated on the resistor.

pr 59. A capacitor is charged by connecting it to a series
connection of a battery of electromotive force E , inductor of in-
ductance L, and a diode. For the V –I dependence of the diode
use the graph of the previous problem; internal resistance of
the battery is negligible. To which voltage the capacitor will
be charged, assuming that E > Vd?

idea 34: If a circuit includes a set of the plates of capacit-
ors which is isolated electrically from the rest of circuit by the
dielectric insulating layers of the capacitors, the net charge on
these plates is conserved.

For instance, consider a series connection of two capacitors
which were initially charge-free. Then the set of two plates
(shown in figure) forms an electrically insulated system, hence
the net charge there will remain always zero, i.e. the two capa-
citors will bear always equal by modulus charge.

pr 60. Show that the series connection of capacitors of ca-
pacitance C1, C2,. . .Cn has net capacitance C = (C−1

1 +C−1
2 +

. . . C−1
n )−1.

pr 61. Three identical charge-less capacitors of capacitance
C are connected in series. The capacitors are charged by con-
necting a battery of electromotive force E to the terminal leads
of this circuit. Next, the battery is disconnected, and two res-
istors of resistance R are connected simultaneously as shown
in figure below. Find the net heat which will be dissipated on
each of the resistances.

idea 35: Extremal currents and voltages can be often found
from the energy conservation law by noting that (a) at the mo-
ment of an inductor’s current extremum, dI

dt = 0, hence the
voltage on the inductor V = LdI

dt = 0; (b) at the moment of
a capacitor’s voltage extremum, dV

dt = C−1 dq
dt = 0, hence the

current through capacitor’s leads I = dq
dt = 0.

pr 62. Consider the electrical circuit given below: initially
chargeless capacitors C1 and C2 were connected to a battery,
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and at certain moment, the key K will be closed. After that
moment, current and voltage will start oscillating. For these
oscillations, you need to find (a) the maximal current Imax
through the inductor; (b) the maximal voltage Vmax on the
capacitor C1.

One way of solving this problem is using the idea 35, to-
gether with the energy conservation law. The second way is to
study the voltage (and current) oscillations in the circuit. LC-
circuit oscillations will be studied later in more details; here it
is enough to formulate one more “fact”.

fact 19: In a closed circuit consisting of a capacitor C and
an inductor L, current through the inductor and voltage on
the capacitor will oscillate sinusoidally with circular frequency
ω0 = 1/

√
LC, e.g. V = V0 sin(ω0t+ φ).29

Indeed, for such a circuit, Kirchoff’s voltage law states that
q/C + LdI

dt = 0; here, q is the capacitor’s charge, and I = dq
dt ,

hence q+LC d2q
dt2 = 0. This is a second order linear differential

equation, the solution of which is given by q = q0 sin(ω0t+ φ),
where the constants q0 and φ can be found using the initial
conditions (e.g. the current and voltage values at t = 0), c.f.
Formula sheet I-3.

idea 36: If the task is to find a temporal dependence of a
voltage or current, and the circuit contains one or more batter-
ies or constant current sources, the solution can be found as
a superposition of a stationary solution (when all the voltages
and currents are constant), and a solution obtained for a sim-
plified circuit, where all the ideal batteries are substituted with
wires, and the current sources are “cut off”.

This idea is based on the fact that if there are neither batteries
nor current sources present, circuits containing linear resistors,
capacitors, and/or inductors are described by Kirchoff’s laws
which represent a set of homogeneous linear differential equa-
tions. The word homogeneous here means that each term in
these equations contains exactly one unknown function (or its
time derivative), Ik(t) or Vl(t) (the current in the k-th wire seg-
ment and the voltage on the l-th circuit element). On the other
hand, if there are also batteries or current sources in the circuit,
there would be also terms without any of the unknown functions
being involved — these are the terms involving the correspond-
ing electromotive forces and/or constant current values; such
systems of equations are called linear nonhomogeneous differ-
ential equations, and if we remove from these equations the
terms without unknown functions, we obtain what is called the
homogeneous part of the equations.

General theory of linear differential equations tells us that
the generic solution of the nonhomogeneous differential equa-
tions is obtained as the sum of (a) the generic solution of the
homogeneous part of these differential equations and (b) one
single (any) solution of the nonhomogeneous equations. If the

nonhomogeneous part of the equations are constant terms then
one solution can be easily found as a stationary solution which
is constant in time and for which all the time derivatives are
equal to zero. In the case of our circuits, the nonhomogen-
eous terms are indeed constant, and usually the stationary solu-
tions (currents in all wires and voltages on all elements) can be
figured out without writing down the differential equations.

In order to find the generic solution of the homogeneous
equations, we need to notice first that the homogeneous part of
the equations corresponds to the case when all the electromot-
ive forces and currents supplied by current sources are set equal
to zero; this corresponds to short-circuiting all the electromot-
ive forces and removal of all the current sources, as suggested
by idea 36. Now, the task of finding the generic solution may
become already easy enough: if parallel and series connections
of resistors can be combined into one single resistor, and the
same applies to capacitors, as well as to inductors then we’ll be
having either a R−C circuit, L−R-circuit, or L−C-circuit. In
each of these cases, we already know the solution as provided by
the facts 13, 18, and 19, which is either an exponential decay
I = I0e−t/τ or a sinusoidal oscillation. In more complicated
cases, it is still possible to find the generic solution without
writing down the system of equations, by using AC-resonance
as explained by idea 48.

pr 63. Under the assumptions of the previous problem,
sketch the voltage on the capacitor C1 as a function of time.

idea 37: If a constant voltage V is applied to the leads
of an inductor, its current will start changing linearly in time:
LdI

dt = V ⇒ I = I0 + V t/L.

pr 64. The circuit below makes it possible to charge a re-
chargeable battery of voltage E = 12 V with a direct voltage
source of a voltage lower than E , V0 = 5 V. To that end, the
key K is periodically switched on and off — the open and
closed periods have equal length of τ = 10 ms. Find the aver-
age charging current assuming that L = 1 H. The diode can
be considered to be ideal; neglect the ohmic resistance of the
inductor.

idea 38: For circuits containing L and R or C and R, at
time-scales much shorter then the characteristic times

τ = RC or τ = L/R,

the capacitor’s charge and inductor’s current remain almost
constant. In particular, if a capacitor was chargeless, its voltage
remains almost zero, i.e. it is essentially short-circuited; if there
was no current in an inductor, its current remains zero, i.e. the
wire leading to the inductor can be considered as broken. If
a capacitor had a charge Q corresponding to a voltage V0, its
voltage remains essentially constant, i.e. it acts as (and can
be substituted by) a battery of emf. E = V0. Similarly, if an

29If there is also a small resistance R connected in series then V = V0e−γt sin(t
√

ω2
0 − γ2 + φ) with γ = R/2L; this will be derived after idea 48
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inductor had a current I0, it can be substituted by a respect-
ive constant current source. If we try to forcefully break the
current through an inductor by switching it off, a rapid fall of
current I creates a huge voltage LdI

dt which usually leads to a
spark at the switch30

At time-scales which are much longer than the characteristic
times, the situation is reversed: inductor can be considered as a
short-circuiting wire, and capacitor as an insulator. This is be-
cause all the currents and voltages tend exponentially towards
the equilibrium state so that the difference from the equilib-
rium value ∆ ∝ e−t/τ : the capacitor charge is almost constant,
hence there is no current, and the inductor current is almost
constant, hence no electromotive force.

pr 65. The key of the circuit given below has been kept
open; at certain moment, it is closed. (a) What is the ammeter
reading immediately after the key is closed? (b) The key is
kept closed until an equilibrium state is achieved; what is the
ammeter reading now? (c) Now, the key is opened, again; what
is the ammeter reading immediately after the key is opened?

The short-time-approximation of the idea 38 can be further
improved with the help of the following idea.

idea 39: If the considered time interval is much less than
RC or L/R, the time dependence of the capacitors’ charges
and inductors’ currents can be linearized: q = q0 + Ict, where
Ic is an almost constant current feeding the capacitor, and
IL = I0 + VLt/L, where VL is an almost constant voltage ap-
plied to the leads of the inductor.

pr 66. Capacitor of capacitance C and resistor of resistance
R are connected in parallel, and rectangular current pulses (see
figure) are applied to the leads of the system. Assuming that
I2 = −I1 and that at the moment t = 0, the capacitor had
no charge, sketch the voltage on the capacitor as a function of
time (a) if T ≫ RC, and (b) if T ≪ RC.

Now assume that the periodic input current has been applied
for a very long time (for much longer than RC), and let us
no longer assume I2 = −I1. Find the average voltage and
the amplitude of the voltage oscillations on the capacitor if (c)
T ≫ RC, and (d) if T ≪ RC.

The last part of this problem requires one more idea.

idea 40: Suppose that a periodic signal is applied to a circuit
containing two or more of the following elements: resistances
(R), capacitors (C), inductances L, nonlinear elements such as
diodes. If the system has evolved long enough (much longer
than RC and L/R, so that the system response has also be-
come periodic), the average voltage on the leads of an inductor
is zero, and the average current through each capacitor is zero.

Indeed, the voltage on an inductor can be expressed via its cur-
rent, V = LdI

dt , and an average non-zero voltage would imply
a non-constant average current, d⟨I⟩

dt = ⟨V ⟩ ̸= 0, which violates
the assumption that the system response has become periodic.
Similarly, a non-zero average current through the wires leading
to a capacitor would imply a non-constant average charge on
the plates of it.

This idea is illustrated with one more problem.

pr 67. Alternating voltage V = V0 cos(2πνt) is applied to
the leads of the circuit shown below. Sketch the graphs of the
resistor’s and diode’s currents as a function of time.

Finally, there is one more idea which can be used when it
is needed to find a charge passing through a resistor.

idea 41: If a circuit contains a current loop (as defined for
idea 13) which contains a resistor R, an inductor L, and/or
embraces an externally applied magnetic flux Φe, the charge
passing through the resistor can be expressed in terms of the
change of the magnetic flux (both external and self-induced):

q = (δΦe + LδI)/R.

Indeed, this follows immediately from the Kirchoff’s voltage
law dΦe

dt + LdΦi

dt = −RI = −Rdq
dt (where Φi = LI), which can

be written as dΦ + L · dI = −R · dq and easily integrated.

pr 68. In order to measure magnetic induction, the follow-
ing device can be used. A small coil with N loops, surface area
S and inductivity L is connected to a ballistic galvanometer
which is graduated to show the total charge of a current pulse
31. The coil is placed into a magnetic field so that the axis of
the coil is parallel to the magnetic field. With a fast motion,
the coil is flipped around by 180◦ (so that axis is again parallel
to the magnetic field); find the total charge of the current pulse
passing through the galvanometer if the total ohmic resistance
of the coil and wires is R

The next idea can be considered to be a limit case of the
idea 38, but it can be formulated as a more generic conservation
law.

30This effect can be used intentionally to create a short pulse of high voltage.
31 The needle of the ballistic galvanometer has a large inertia, it will take some time before it will reach the equilibrium position; because of that, if

a short current pulse is let through such a galvanometer (shorter than the response time of the galvanometer), the maximal declination of the needle
will be proportional to the total charge of the pulse.
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idea 42: If a circuit includes a current loop which is entirely
in a superconducting state (i.e. with strictly zero resistance),
the magnetic flux through it is conserved, Φ = Const. This
follows directly from the Kirchoff’s voltage law for the super-
conducting circuit, dΦ

dt = 0. If the flux is only due to the
self-inductance, and there is only one inductor of inductance L
in the circuit then LI = Const; if L is constant then also I is
constant.

In the Section “Electromagnetism’, there will be more ex-
amples for the application of this idea (involving external fields
and mutual induction); here just one problem is provided.

pr 69. [IPhO-1994] Superconducting magnets are widely
used in laboratories. The most common form of superconduct-
ing magnets is a solenoid made of superconducting wire. The
wonderful thing about a superconducting magnet is that it pro-
duces high magnetic fields without any energy dissipation due
to Joule heating, since the electrical resistance of the supercon-
ducting wire becomes zero when the magnet is immersed in
liquid helium at a temperature of 4.2 K. Usually, the magnet
is provided with a specially designed superconducting switch,
as shown in Fig. 1. The resistance r of the switch can be
controlled: either r = 0 in the superconducting state, or in
the normal state. When the persistent mode, with a current
circulating through the magnet and superconducting switch in-
definitely. The persistent mode allows a steady magnetic field
to be maintained for long periods with the external source cut
off.

The details of the superconducting switch are not given in
Fig. (a). It is usually a small length of superconducting wire
wrapped with a heater wire and suitably thermally insulated
from the liquid helium bath. On being heated, the temperat-
ure of the superconducting wire increases and it reverts to the
resistive normal state. The typical value of is a few ohms. Here
we assume it to be 5 Ω. The inductance of a superconducting
magnet depends on its size; assume it be 10 H for the magnet
in Fig. (a). The total current I can be changed by adjusting
the resistance R.

The arrows denote the positive direction of I, I1 and I2.

(a) If the total current I and the resistance r of the super-
conducting switch are controlled to vary with time in the way
shown in Figs. (b)-i and (b)-ii respectively, and assuming the
currents I1 and I2 flowing through the magnet and the switch
respectively are equal at the beginning (Fig. (b)-iii and Fig. (b)-
iv), how do they vary with time from t1 to t4? Plot your answer
in Fig. (b)-iii and Fig. (b)-iv.
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(b) Suppose the power switch K is turned on at time t = 0
when r = 0, I1 = 0 and R = 7.5 Ω, and the total current I is
0.5 A. With K kept closed, the resistance r of the supercon-
ducting switch is varied in he way shown in Fig. (c)-ii. Plot the
corresponding time dependences of I, I1 and I2 in Figs. (c)-i,
(c)-iii and (c)-iv respectively.
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(c) Only small currents, less than 0.5 A, are allowed to flow
through the superconducting switch when it is in the normal
state, with larger currents the switch will be burnt out. Sup-
pose the superconducting magnet is operated in a persistent
mode, i. e. I = 0, and I1 = i1(e.g. 20 A), I2 = −i1, as shown
in Fig. (d), from t = 0 to t = 3 min. If the experiment is to be
stopped by reducing the current through the magnet to zero,
how would you do it? This has to be done in several operation
steps. Plot the corresponding changes of I, r, I1 and I2 in
Fig. (d)
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(d) Suppose the magnet is operated in a persistent mode with
a persistent current of 20 A [t = 0 to t = 3 min. See Fig. (e)].
How would you change it to a persistent mode with a current
of 30 A? plot your answer in Fig. (e).
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Previously we introduced inductance with facts 14–16. In
particular, we learned that electric current I in a circuit will
cause a flux of magnetic field Φ = LI, where L is the self-
inductance of the loop. Consider now two loops which are
positioned in each other’s neighbourhood. Then, similarly to
what we observed for a single loop, a current I1 in the first
loop will cause a magnetic field in the position of the other
loop, and hence, gives rise to a flux Φ21 through the second
loop. Due to the linearity of the Maxwell’s equations32, the
flux is proportional to the current, so Φ21 ∝ I1; the coefficient
of proportionality L21 is called the mutual inductance. Now we
can express the total flux in the second loop as

Φ2 = L21I1 + L2I2,

where L2 is the self-inductance of the second loop. Similarly,
the flux through the first loop is expressed as

Φ1 = L12I2 + L1I1,

where L1 is the self-inductance of the first loop.
fact 20: If there are two loops (or two inductors) then the mu-
tual inductance L21 is defined as the coefficient of proportional-
ity between the flux in the second loop, caused by the current
I1 in the first loop, and the current I1. L12 is defined analog-
ously; it appears that always, L12 = L21. If there are only two
magnetically coupled circuits, both are usually denoted as M ,
so that total flux through the first loop is expressed as

Φ1 = MI1 + L1I1.

The total energy of the system is
W = 1

2
(
L1I

2
1 + 2MI1I2 + L2I

2
2
)
.

(Both equalities will be proved below.) As long as the currents
I1 and I2 flow in independent circuits, the sign of M is not
important as we can just change the sign of one of the currents.
However, if I1 and I2 are connected to each other via Kirchoff’s
current law33, we need to be careful to select the correct sign
of M .

The equality L12 = L21 is very useful, it is analogous to
the reciprocity theorem (cf. appendix 2) and to Newton’s 3rd
law. Sometimes it is difficult to calculate a force exerted by a
body A to a body B, but it is easy to calculate the force exer-
ted by the body B to the body A (for instance, when A is a
point charge and B — an homogeneously charged plate); simil-
arly, it is sometimes difficult to calculate L12, but it is easy to
calculate L21 (naturally we determine M then by calculating
L21).

In order to prove this fact, let us first derive an expression
for the total energy for the system consisting of the two current-
carrying circuits similarly to how we proved the fact 16. So we

have two simple circuits, each consisting of an inductor and an
adjustable current source. We start with increasing the current
in the first loop while keeping the current in the second loop
zero. The work done by the current source in the second loop
is zero because no charge will pass through the current source.
If the final value of the current in the first loop is I1 then the
work done by the first current source is 1

2L1I
2
1 (due to the fact

16). Next we start increasing the current in the second loop
while keeping the current in the first loop constant. Let us con-
sider a current increment dI2; this will give rise to a voltage in
the first loop which needs to be compensated by an electromot-
ive force of the current source E1 = L12

dI2
dt ; similarly for the

current source of the second loop E2 = L2
dI2
dt . The work done

by the first current source

A1 ==
∫

E1dq1 =
∫
L12

dI2

dt
·dq1 =

∫
L12

dq1

dt
dI2 = L12

∫
I1dI2.

Now let us recall that in our process, I1 is constant, so the
integral is easily taken, resulting in A1 = L12I1I2. The work
done by the second current source is calculated similarly, res-
ulting in A2 = E2dq2 = 1

2L2I
2
2 . Therefore, the total amount of

work which has been done is
W = 1

2L1I
2
1 +A1 +A2 = 1

2
(
L1I

2
1 + 2L12I1I2 + L2I

2
2
)
.

Now it is clear that if we increase the currents in the reverse
order, we shall obtain a result where the indices 1 and 2 are
swapped: W = 1

2
(
L1I

2
1 + 2L21I1I2 + L2I

2
2
)
. The work of the

current sources was transferred to the energy of the magnetic
field and its value can depend only on the final state of the sys-
tem, hence these two expressions must provide the same result
and therefore, L12 = L21.

Magnetic field energy density is proportional to the squared
magnetic field strength and hence, is always positive; because
of that, any system of magnetically coupled current-carrying
inductors must also have a positive total energy. From this
condition, we can derive a useful inequality for the mutual
inductance M . Indeed, for two loops, the total energy can
expressed as W = 1

2I
2
1
(
L1 + 2Mx+ L2x

2), where x = I2/I1.
Note that x can take any values, including negative ones, but
W must remain non-negative. Therefore, the roots x1 and x2
of the quadratic equation L1 + 2Mx + L2x

2 = 0 cannot take
real values (unless the two roots are equal): otherwise, for any
value of x between x1 and x2, W would be negative. Thus, the
discriminant must be nonnegative, M2 ≤ L1L2.

Equality M2 = L1L2 would mean that the total energy of
the system can be zero even if there are non-zero currents in
the loops. Zero energy means zero magnetic field: the magnetic
field created by a current in one loop must negate everywhere
the magnetic field created by the current in the other loop.
This is possible only if the shape of the field lines of the both
loops are identical. To achieve this, there are two possibilities:
(a) they must have identical and overlapping in space geomet-
rical shape (two solenoids of identical length and cross-sectional
area but possibly with different winding densities, one of which
is inserted tightly into the other), or
(b) the windings of the both inductors must be made around
the same closed ferromagnetic core as shown in figure — such
devices are called transformers. As we shall learn in electro-

32To be discussed in more details in the Electromagnetism booklet
33For instance, by problem 85

— page 22 —



2. CIRCUITS INCLUDING CAPACITORS AND INDUCTANCES

magnetism, magnetic field lines keep, if possible, inside fer-
romagnetic materials; if the ferromagnetic core is closed (e.g.
having a toroidal shape), there is no need for the field lines
caused by the current in the winding to exit the core. In that
case, the shape of the field lines inside the core is defined by
the shape of the core, and not by where and how the winding
is made. Note that electrical transformers are usually made
using a closed ferromagnetic core as shown in the figure below;
for the electrical symbol of such transformer, see problem 70.

fact 21: Mutual inductance cannot be larger than the geo-
metric average of the self-inductances; equality M =

√
L1L2

is achieved for transformers when all the magnetic field lines
created by the both coils have identical shapes.

idea 43: If there is no leakage of magnetic field lines from
a transformer, i.e. if M =

√
L1L2 then the total inductive

electromotive force in both inductors is defined by the same
linear combination of currents J ≡ I1

√
L1 + I2

√
L2 (indeed,

Φ1 = J
√
L1 and Φ2 = J

√
L2). This has two important con-

sequences.
(i) The idea 38 states that if there are inductors, the inductor
currents need to be continuous; in the case of transformers with
M =

√
L1L2, this statement has to be modified: what need to

be continuous are the fluxes, and this is achieved as long as J
is a contiuous function of time, i.e. current jumps satsify the
condition ∆I1 = −∆I2

√
I2/I1.

(ii) Assuming that there are no other inductors affected by the
currents I1 and I2, if we write down all the Kirchoff’s voltage
laws, we can reduce the order of the system of differential equa-
tions by one if we use J (or J/

√
L1 which has the dimensionality

of an electric current) as one unknown function, and any other
linear combination of I1 and I2 as the other unknown.

Let us elaborate on the statement (i) and consider the simplest
case of only two unknown functions, I1 and I2. Then we would
be able to get two equations given by the Kirchoff’s voltage
law. Inductors yield us terms containing derivatives of I1 and
I2 so that with M <

√
L1L2 we would have a second order

system of linear differential equations (if we take derivative of
both equations, and eliminate from the four equations I2 and
dI2
dt , we obtain a second order differential equation for I1). Now

with M =
√
L1L2, however, we can use J as one of the vari-

ables, and eliminate dJ
dt from the set of equations; we result

in an expression relating I1 and I2 to each other, i.e. we can
express I2 in terms of I1. If we substitute I2 in one of the
original differential equations using this expression, we obtain
a first order differential equation for I1.

pr 70. An electrical transformer is connected as shown in
the circuit below. Both windings of the transformer have the
same number of loops and the self-inductance of the both coils
is equal to L; there is no leakage of the magnetic field lines
from the core so that the mutual inductance is also equal to L.

(a) Find the current in the both loops immediately after the
switch is closed.
(b) Find the currents as a function of time.

Problems involving ideas 32–43

pr 71. There are three identical lamps which are connected
to a battery as shown in figure; the current through each lamp
is I. Find the currents immediately after the key is opened.

pr 72. In the circuit shown below, the key K has been kept
in the position 1; after an equilibrium state has been reached,
the key is thrown over to the position 2. This is done much
faster than the characteristic time (L1 + L2)/R. After that,
we wait for a very long time until a new equilibrium state is
reached. Find the amount of heat Q which was dissipated in
the resistor R after the key was switched to the position 2.
Also, find the total charge q which flowed through the resistor
R during the same period of time. Neglect the internal resist-
ance of the inductors. Note that the resistance of all the wires
is also negligible, but there is no superconductivity.

pr 73. Capacitor of capacitance C and resistor of resistance
R are connected in series, and rectangular voltage pulses (see
figure) are applied to the leads of the system. Find the aver-
age power which dissipates on the resistors assuming (a) that
T ≫ RC; (b) that T ≪ RC.

pr 74. Determine the time constant for the circuit shown
in figure (i.e. for the process of charging the capacitor, time
interval during which the charging rate drops e times).

— page 23 —



2. CIRCUITS INCLUDING CAPACITORS AND INDUCTANCES

pr 75. A boy wants to build decorative lights using 50 light
emitting diodes, to be fed by AC-voltage V = V0 cos(2πνt),
with V0 = 311 V and ν = 50 Hz. The circuit he plans to
use is given below. The voltage of his light emitting diodes
can be taken equal to 3 V (it remains constant for a wide
range of forward currents); the nominal current is 20 mA.
Find the optimal value of the resistor R (ensuring a nom-
inal operation of the diodes), and minimal value of the ca-
pacitance C, if the current variations need to be less than
5%. The rectifying diode D can be considered to be ideal.

pr 76. [EstFin-2012] For the circuit shown in Figure, R1 =
3R, R2 = R, C1 = C2 = C, and L1 = L2 = L. The electromot-
ive force of the battery is E . Initially the switch is closed and
the system is operating in a stationary regime.
(a) Find the reading of the voltmeter in the stationary regime.
(b) Now, the switch is opened. Find the reading of the volt-
meter immediately after the opening.
(c) Find the total amount of heat which will be dissipated on
each of the resistors after opening the switch, and until a new
equilibrium state is achieved.

V

ε

L
2

L
1

R
2

R
1

C
2

C
1

pr 77. [EstFin-2008] A voltage rectifier is made according
to the circuit depicted in Figure. The load R = 10 kΩ is fed
with DC, equal to I = 2 mA. In what follows we approximate
the U-I characteristic of the diode with the curve depicted in
Figure. The relative variation of the current at the load has to
satisfy the condition ∆I/I < 1%.

(a) Find the average power dissipation at the diode at the work-
ing regime of such a circuit.
(b) Determine the amplitude of the AC voltage (with frequency
ν = 50 Hz), which has to be applied at the input of the circuit.
(c) Find the required capacitance C.
(d) Find the average power dissipation at the diode during the
first period (of AC input voltage) immediately following the
application of AC voltage to the input of the circuit.

pr 78. [Est-Fin-2010]
(a) Consider the circuit given in Fig (a), where the diode can
be assumed to be ideal (i.e. having zero resistance for forward
current and infinite resistance for reverse current. The key is
switched on for a time τc and then switched off, again. The
input and output voltages are during the whole process con-
stant and equal to Ui and Uo, respectively (2Ui < Uo). Plot
the graphs of input and output currents as functions of time.

(b) Now, the key is switched on and off periodically; each time,
the key is kept closed for time interval τc and open — also for
τc. Find the average output current.

(c) Now, circuit (a) is substituted by circuit (b); the switch
is switched on and off as in part ii. What will be the voltage
on the load R, when a stationary working regime has been
reached? You may assume that τc ≪ RC, i.e. the voltage vari-
ation on the load (and capacitor) is negligible during the whole
period (i.e. the charge on the capacitor has no time to change
significantly).

pr 79. [IPhO-2001] A sawtooth voltage waveform V0 can
be obtained across the capacitor C in Fig. (A); R is a variable
resistor, Vi is an ideal battery, and SG is a spark gap con-
sisting of two electrodes with an adjustable distance between
them. When the voltage across the electrodes exceeds the fir-
ing voltage Vf , the air between the electrodes breaks down,
hence the gap becomes a short circuit and remains so until the
voltage across the gap becomes very small.
(a) Draw the voltage waveform V0 versus time t, after the switch
is closed.
(b) What condition must be satisfied in order to have an almost
linearly varying sawtooth voltage waveform V0?
(c) Provided that this condition is satisfied, derive a simplified
expression for the period T of the waveform.
(d) What should you vary( R and/or SG ) to change the period
only?
(e) What should you vary (R and/or SG ) to change the amp-
litude only?
(f) You are given an additional, adjustable DC voltage supply.
Design and draw a new circuit indicating the terminals where
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you would obtain the voltage waveform described in Fig. (B).

pr 80. [Est-Fin-2013] An inductance L and a capacitor C
are connected in series with a switch. Initially the switch is
open and the capacitor is given a charge q0. Now the switch is
closed.
(a) What are the charge q on the capacitor and the current I
in the circuit as functions of time? Draw the phase diagram
of the system — the evolution of the system on a I − q graph
— and note the curve’s parameters. Note the direction of the
system’s evolution with arrow(s).

A Zener diode is a non-linear circuit element that acts as a
bi-directional diode: it allows the current to flow in the pos-
itive direction when a forward voltage on it exceeds a certain
threshold value, but it also allows a current to flow in the oppos-
ite direction when exposed to sufficiently large negative voltage.
Normally the two voltage scales are quite different, but for our
purposes we will take a Zener diode with the following volt-
ampere characteristics: for forward currents, the voltage on
the diode is Vd, for reverse currents, the voltage on the diode is
−Vd, for zero current the voltage on the diode is −Vd < V < Vd.

Now we connect the inductance L, the capacitor C all in series
with a switch and a Zener diode. The switch is initially open.
The capacitor is again given the charge q0 > CVd and the
switch is then closed.
(b) Make a drawing of the phase diagram for the system. Note
the direction of the system’s evolution with arrow(s).
(c) Does the evolution of the system only necessarily stop for
q = 0? Find the range of values of q on the capacitor for which
the evolution of the system will necessarily come to a halt.
(d) Find the decrease ∆q in the maximum positive value of the
capacitor’s charge q after one full oscillation. How long does it
take before oscillation halts?
(e) Suggest a mechanical system which is analogous to this
circuit.

pr 81. [EstFin-2009] Consider an electric circuit consisting
of a coil of negligibly small inductance, consisting of N = 10
turns and with the surface area of a single loop S = 10 cm2,
resistors R1 = R2 = 3 Ω, capacitor C = 0.2 F, and an induct-
ance L = 1H, connected as shown in Fig. At the moment of
time t = 0, a magnetic field, parallel to the axis of the coil is
switched on. The induction of the magnetic field starts growing
linearly, starting from B = 0 until the maximal value B = 1 T
is achieved at t = 10 ms. Further, the induction of the magnetic
field remains constant (and equal to 1 T).

(a) Find the current through the resistors R1 and R2 at the
moment of time t1 = 5 ms.
(b) Find the current through the resistors R1 and R2 at the
moment of time t2 = 15 ms.
(c) What is the net charge passing through the resistor R2?

pr 82. As we have learned with problem 56, if we want to
measure the full V − I-curve of a tunnel diode, it needs to be
specifically stabilized34. Let us study such a stabilization in
more details. Let a tunnel diode be connected in series with a
resistance R to a battery, and let the parameters of the system
be such that at the stationary state, the diode’s voltage is such
that the diode’s differential resistance Rdiff < −R.
(a) According to the results of problem 56, this stationary state
is unstable; in order to stabilize it, a series connection of a ca-
pacitance C and a resistance r are connected in parallel to the
diode. The wires connecting the capacitor and resistor r to the
diode are so short that the corresponding inductance Ld can
be assumed to be negligibly small; the inductance of the wires
connecting the diode, battery, and resistor R to each other is
L, (see figure; neglect the capacitance Cd). Which condition(s)
need to be satisfied for C, R, Rdiff, r and L for stabilization?

(b) In task (a) we addressed a relatively slow instability; in
that case, the characteristic time of current variation cannot
be much less than

τs ≡ min
(

L

|R+Rdiff|
, C|r +Rdiff|

)
.

However, with the new addition to the circuit, there is now a
current loop consisting of the diode, resistance r, capacitance
C, and inductance Ld in which the characteristic time scale τf

can be much smaller than τs, of the order of Ld/|r+Rdiff|. For
such fast current fluctuations, we can no longer neglect the in-
ductance Ld (its impedance becomes comparable with |Rdiff|).
The negative differential resistance in that loop may give rise to
emergence of instabilities which develop within the time-scale
τf ≪ τs. For the analysis of instabilities within that loop, it is
also important to notice that the tunnel diode has electrodes
which perform as a capacitor of capacitance Cd ≪ C, connected
in parallel to the differential resistance Rdiff (for very fast cur-
rent fluctuations, the impedance of Cd may become comparible
with |Rdiff|). Find the condition for the lack of fast instabilit-
ies, i.e. instabilities which would develop within a time-scale
τf ≪ τs; simplify your calculations by using appropriate ap-
proximations.

34Such a stabilization has been done for the black-box-experiment at IPhO-2012
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pr 83. [IPhO-2016] The I − V characteristics of a thyristor
can be approximated by a piece-wise linear graph as shown
in the figure below. Henceforth we consider such an idealized
thyristor, the I − V curve of which is given by figure, and
refer to it as the “nonlinear element X”. In the voltage range
between Uh = 4.00 V (the holding voltage) and Uth = 10.0 V
(the threshold voltage) this I − V curve is multivalued.

(a) Using the graph, determine the resistance Ron of the ele-
ment X on the upper branch of the I − V characteristics, and
Roff on the lower branch, respectively. The middle branch is
described by the equation I = I0 − U

Rint
. Find the values of the

parameters I0 and Rint.
(b) The element X is connected in series with a resistor R, an
inductor L and an ideal voltage source E (see figure below).
The circuit is said to be in a stationary state if the current is
constant in time, I(t) = const.

ℰ

R L

How many different stationary states this circuit may have for
a fixed value of E and for R = 3.00 Ω (consider different values
of E)? How does the answer change for R = 1.00 Ω?
(c) Let R = 3.00 Ω, L = 1.00 µH and E = 15.0 V in the cir-
cuit shown above. Determine the values of the current Ist and
the voltage Vst on the non-linear element X in the stationary
state. Is this state stable or unstable (study the effect of a
small departure of the current strength from Ist)?
(d) We now investigate a new circuit configuration, see figure
below. This time, the non-linear element X is connected in par-
allel to a capacitor of capacitance C = 1.00 µF. This block is
then connected in series to a resistor of resistance R = 3.00 Ω
and an ideal constant voltage source of voltage E = 15.0 V.
It turns out that this circuit undergoes oscillations with the
non-linear element X jumping from one branch of the I − V

characteristics to another over the course of one cycle.

C ℰ

R

Draw the oscillation cycle on the I − V graph, including its
direction (clockwise or anticlockwise).

(e) Find expressions for the times t1 and t2 that the system
spends on each branch of the I−V graph during the oscillation
cycle. Determine their numerical values. Find the numerical
value of the oscillation period T assuming that the time needed
for jumps between the branches of the I−V graph is negligible.
(f) Estimate the average power P dissipated by the non-linear
element over the course of one oscillation. An order of mag-
nitude is sufficient.
(g) A neuron in a human brain has the following property:
when excited by an external signal, it makes one single oscilla-
tion and then returns to its initial state. This feature is called
excitability. Due to this property, pulses can propagate in the
network of coupled neurons constituting the nerve systems. A
semiconductor chip designed to mimic excitability and pulse
propagation is called a neuristor (from neuron and transistor).
We attempt to model a simple neuristor using a circuit that
includes the non-linear element X that we investigated previ-
ously. To this end, the voltage E in the circuit above is de-
creased to the value E ′ = 12.0 V. The oscillations stop, and
the system reaches its stationary state. Then, the voltage is
rapidly increased back to the value E = 15.0 V, and after a
period of time τ (with τ < T ) is set again to the value E ′ (see
figure below). It turns out that there is a certain critical value
τcrit., and the system shows qualitatively different behavior for
τ < τcrit and for τ > τcrit.

t
11

12

13

14

15

16

ℰ [V]

t0 t0 +τ

Sketch the graphs of the time dependence of the current IX(t)
on the non-linear element X for τ < τcrit and for τ > τcrit.
(h) Find the expression and the numerical value of the critical
time τcrit for which the scenario switches.

pr 84. [Est-Fin-2014]
In order to obtain high voltage supply using a battery, the
following circuit is used.

An electromagnetic switch K1 connects a battery of electromot-
ive force E to an inductor of inductance L: it is closed if there
is no current in the inductor (a spring keeps it closed), but if
the inductor current reaches a critical value I0, magnetic field
created by the inductor pulls it open. Due to inertia, once the
key is open, it takes a certain time τK to close again even if
the current falls to zero.
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For the diode D you may assume that its current is zero for any
reverse voltage (VD < 0), and also for any forward voltage smal-
ler than the opening voltage V0 (i.e. for 0 < VD < V0). For any
non-zero forward current, the diode voltage VD remains equal
to V0.

You may express your answers in terms of L, E , I0, V0, R, and
the capacitance C (see figure).

a) At first, let the key K2 be open. If the initial inductor
current is zero, how long time τL will it take to open the key
K1?

b) Assuming (here and in what follows) that L/R ≪ τK ≪ τL,
plot the inductor current as a function of time t (for 0 ≤ t <

3τL).

c) What is the maximal voltage Vmax on the resistor R?

d) Assuming that Vmax ≫ V0, what is the average power dis-
sipation on the diode?

e) Now, let the key K2 be closed, and let us assume simplify-
ingly that V0 = 0; also, RC ≫ τL and τK > π

√
LC. Suppose

that the circuit has been operated for a very long time. Find
the average voltage on the resistor.

f) Find the amplitude of voltage variations on the resistor.

pr 85. An electrical transformer is connected as shown in
the circuit below. Both windings of the transformer have the
same number of loops and the self-inductance of the both coils
is equal to L; there is no leakage of the magnetic field lines
from the core so that the mutual inductance is also equal to L.

(a) Consider the case when the coil windings are oriented so
that if the both coils have current flowing from left to right
then the magnetic fields in the transformer core add up de-
structively Find the currents in the resistors immediately after
the switch is closed.
(b) Under the assumption of the task (a), find the current in
the left resistor as a function of time.
(c) Now, let one of the coils have a reversed direction of wind-
ing; find the current in the right resistor as a function of time.

Alternating current
Alternating current (AC) and voltage are assumed to be sinus-
oidal, e.g. I = I0 sin(ωt+φ). Kirchoff’s laws are linear — they
involve only adding first powers of voltages and currents; hence,
as long as the circuit elements are linear (i.e. their properties do
not depend on the amplitude of the current or voltage), dealing
with Kirchoff’s laws means dealing with linear combinations of
voltages and currents. However, sine and cosine are not very
convenient functions for adding, in particular if different terms
have different phase shift φ. Luckily, using the Euler’s formula
(see appendix 5), sine and cosine can be substituted with ex-
ponential function, if we switch from real numbers to complex

numbers:
ei(ωt+φ) = cos(ωt+ φ) + i sin(ωt+ φ).

So, instead of using a sine or cosine, we write I = I0ei(ωt+φ).
The exponential function is much easier to deal with, because
if we add different voltages or currents with the same fre-
quency, the term eiωt can be factorised, owing to the property
ea+b = ea · eb (see appendix 6). There is no need to worry that
physical quantities are typically measured in real numbers, and
now we have suddenly a complex current (and voltage): cur-
rent remains to be a real-valued quantity; when we write it in a
complex form, we just keep in mind that what we actually have
(in physical reality) is the real part of that complex number. So,
if we write I = I0ei(ωt+φ), we assume that the physically meas-
urable current is Ir = ℜI0ei(ωt+φ) = I0 cos(ωt+ φ) (ℜz stands
for “real part of z”).

Now, if we accept the complex form I = I0ei(ωt+φ) =
I0eiφ · eiωt, it is convenient to combine I0 and eiφ into what
we call the complex amplitude of the current,

Ic = I0eiφ.

Then, all the currents and voltages are products of eiωt with the
complex amplitude, which means that for any linear combin-
ation of currents and voltages, the time-dependent factor eiωt

can be brought before the braces. If so, there is no need to write
always that term: typically, all the calculations are done just
with the complex amplitudes, the modulus of which gives us
the amplitude, |Ic| = |I0eiφ| = |I0||eiφ| = I0, and the argument
of which gives us the phase shift, φ = arg I0 = arctan ℑIc/ℜIc

(for more details about those properties of complex numbers
which have been used here, see appendix 8).

From this brief theory we can draw the following conclu-
sions. Operating with complex amplitudes works well as long
as we have a single sinusoidal signal, and only linear circuit
elements are included. Inversely, complex amplitudes cannot
be used if (a) the signal is not sinusoidal, e.g. rectangular;
(b) if there are nonlinear elements, e.g. diodes, capacitors for
which capacitance depends on the charge, etc. If we have a su-
perposition of different frequencies and these assumptions are
satisfied, the different frequency signals need to be studied sep-
arately (superposition principle can be applied), and for each
component-signal, the complex amplitudes can be used. An
important case is the power dissipated in the circuit: this is a
nonlinear function of the voltage and current, and so we need
to be careful. Let I and V be the complex amplitudes of the
current and voltage. Then

P =
⟨
ℜIeiωt · ℜV eiωt

⟩
=
⟨
Ieiωt + Ie−iωt

2
· V eiωt + V e−iωt

2

⟩
,

where ⟨. . .⟩ denotes averaging over time, and bar over a sym-
bol denotes a complex conjugate (a+ bi ≡ a − bi; eiω = e−iω).
Upon opening the braces and using the fact that

⟨
ei2ωt

⟩
=⟨

e−i2ωt
⟩

= ⟨cos 2ωt⟩ + i ⟨sin 2ωt⟩ = 0, we obtain

P = IV + V I

4
= |I||V |e

iφ1e−iφ2 + e−iφ1eiφ2

4
;

using the formula cosx = 1
2 (eix + e−ix), we end up with

P = |I||V |e
i(φ1−φ2) + e−i(φ1−φ2)

4
= 1

2
|I||V | cos(φ1 − φ2).

Note that this can be rewritten as P = 1
2 ℜV I, because

ℜV I = |V ||I|ℜeiφ1e−iφ2 = |V ||I| cos(φ1 − φ2). Also, since
ℜV I = ℜ(ZI)I = ℜZ|I|2 = |I|2ℜZ, we can write

P = 1
2

|I|2ℜZ.
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In order to get rid of the factor 1
2 , amplitudes are often sub-

stituted by root mean square (rms) amplitudes: Ũ = U/
√

2,
Ĩ = I/

√
2 (always make clear with which amplitude you are

dealing with).
And so, in the case of AC currents, it is convenient to deal

with complex amplitudes. Most often, the temporal depend-
ence in the form of eiωt is never written, and calculations in-
volve only the complex amplitudes.

Let us recall that at the leads of an inductor, U = LdI
dt .

Once we substitute here I = I0eiωt we obtain immediately
U = iωLI0eiωt. The prefactor of the exponent here is the com-
plex amplitude U0 = iωLI0 of the capacitor’s voltage; upon
denoting

ZL = iωL

we can rewrite the last equality as U0 = ZLI0; here, ZL is
called impedance. So, if dealing with complex amplitudes,
an inductor’s voltage and current satisfy the Ohm’s law in the
same way as in the case of resistors with a direct current (DC)

— just instead of a resistance, its impedance is to be used.
Similarly, for a capacitor we have U = q/C =

∫
I · dt/C =∫

I0eiωt · dt/C = I0/iωC, i.e. U0 = I0ZC with

ZC = 1
iωC

.

Finally, for a resistor we have still the Ohm’s law U = IR =
I0eiωt, hence U0 = ZRI0 with

ZR = R.

Sometimes this is called the “active resistance”, or “ohmic res-
istance”, emphasizing the difference from the “reactive” and
non-ohmic impedances ZL and ZC .

As a conclusion:

idea 44: For AC circuits, all the techniques learnt for DC cur-
rents can be used (Kirchoff’s laws, method of potentials etc.),
if calculations are made with the complex amplitudes, and im-
pedances are used as resistors: for the complex amplitudes of
the voltage and current, V = IZ, where Z is the circuit’s full
impedance; the phase shift between the voltage and current is
given by φ = argZ.

The only difference is in the way how the power dissipation is
to be calculated (see above).

idea 45: For AC circuits, the dissipated power
P = |I||V | cosφ = ℜV I = |I|2ℜZ.

NB! Here V and I are assumed to be the rms amplitudes; if we
deal with the real amplitudes, the factor 1

2 is to be added. Al-
ternatively, since there is no power dissipation on the inductors
and capacitors (for which φ = π

2 so that cosφ = 0), the power
can be calculated as the power dissipated in all the resistors,
for each of which P = RI2

R (IR being the resistor’s current).

Note that if we deal with AC appliances and cosφ is small,
for a given required power dissipation, the current needs to
be larger than what would be in the case of larger values of
cosφ. Unnecessarily large current means unnecessarily large
dissipation losses in the power lines. The appliances based on
inductors (in particular those including electromagnetic mo-
tors) have intrinsically small cosφ. Therefore, if several ap-
pliances of small cosφ are plugged simultaneously into a AC
outlet, in order to reduce the net current in the power lines, it

would be a good idea to equip some appliances with capacit-
ors, which make the phase shift opposite without introducing
any additional power dissipation: when currents of opposite
(or nearly opposite) phase shift are added in the power lines,
the large and opposite imaginary parts of the complex current
amplitudes cancel out, giving rise to a significant reduction of
the net current.

fact 22: It should be also mentioned that sometimes, the
concepts of reactive and apparent powers, Pr and Pa are used,
defined as

Pa = |V I| and Pr = ℑV I,
where ℑz stands for “imaginary part of z”.

However, these concepts are not very useful, and serve mainly
as tools to emphasize the importance of having large cosφ —
small reactive power.

pr 86. Consider a soldering gun of nominal power P = 30 W
and nominal voltage V = 220 V (AC voltage with frequency
ν = 50 Hz). Which capacitance needs to be connected in series
to the iron in order to reduce the power down to P1 = 20 W?

pr 87. [IPhO-1982] An alternating voltage of 50 Hz fre-
quency is applied to the fluorescent lamp as shown in the ac-
companying circuit diagram. The following quantities are meas-
ured: overall voltage (main voltage) V = 228.5 V, electric cur-
rent I = 0.6 A, voltage across the fluorescent lamp U ′ = 84 V,
ohmic resistance of the inductor Rd = 26.3 Ω. The fluorescent
lamp itself may be considered as an ohmic resistor in the cal-
culations.
(a) What is the inductance L of the series reactor?
(b) What is the phase shift φ between voltage and current?
(c) What is the active power Pw transformed by the apparatus?
(d) Apart from limiting the current the series inductor has an-
other important function. Name and explain this function!
Hint: The starter (denoted by a circle with “S”) includes a con-
tact which closes shortly after switching on the lamp, opens up
again and stays open.
(e) In a diagram with a quantitative time scale sketch the time
sequence of the luminous flux emitted by the lamp.
(f) Why has the lamp to be ignited only once although the ap-
plied alternating voltage goes through zero in regular intervals?
(g) According to the statement of the manufacturer, for a
fluorescent lamp of the described type a capacitor of about
C = 4.7 µF can be switched in series with the series reactor.
How does this affect the operation of the lamp and to what
intent is this possibility provided for?

idea 46: With alternating currents, voltages caused by mu-
tual inductances can be calculated in the same way as in the
case of inductors: if there is a current of complex amplitude I1
in a coil of inductance L1 which is magnetically coupled (with
mutual inductance M) to a second coil with current I2 then
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the total voltage on the first inductor is iωL1I1 + iωMI2. NB!
Be careful with the sign of the mutual inductance, cf. fact 20.

pr 88. Around a toroidal ferromagnetic core of a very large
magnetic permeability, a coil is wound; this coil has a large
number of loops and its total inductivity is L. A capacitor of
capacitance C is connected to the middle point of the coil’s
wire as shown in figure. AC voltage V0 of circular frequency ω
is applied to the input leads of the circuit; what is the reading
of the ammeter (which can be considered to be ideal)?

fact 23: In AC circuits the impedance of which is domin-
ated by capacitors and inductors, free oscillations of current
and voltage can take place; the decay rate of oscillations is
defined by the ohmic resistance of the circuit. The frequency
of such an oscillation is called the natural frequency, or eigenfre-
quency; the corresponding current- and voltage oscillations are
referred to as the natural modes. If the circuit contains more
than one current loop, there may be more than one natural
frequencies. Then, if the circuit is left isolated from external
inputs, any current- and voltage dynamics in that circuit can
be represented as a superposition of the natural modes.

That superposition thing means mathematically that if we have
n nodes characterized by the node potentials ϕj , j = 1, . . . , n,
and m natural frequencies ωµ, µ = 1, . . .m, and in the case of
the µ-th natural frequency, the node voltages oscillate accord-
ing to the law

ϕj = Vµjeiωµt,

where Vµj is the complex amplitude of the potential of the j-
th node in the case of the µ-th natural mode, then arbitrary
motion of the system can be represented as

ϕj =
m∑

µ=1
AµVµjeiωµt,

where Aµ is a constant — the amplitude of the µ-th natural
motion. Such a decomposition into natural modes will be re-
visited in the section “Oscillations and waves”.

idea 47: If the impedance of a circuit is dominated by in-
ductors and capacitors35 the number of its natural oscillation
modes can be found as follows. Find the number of linearly
independent loops Nl for the given circuit (cf. idea 13); find
the number of such linearly independent loops N= which con-
tain only one type of elements (all resistors, all inductors, or
all capacitors); the number of natural modes is then given by
Nm = Ni −N=. In addition to that, each linearly independent
loop containing only inductors contributes one zero-frequency
mode: a constant current can circulate in each such a loop.

The proof of this idea (together with its generalization to cir-
cuits for which resistances play an important role) is given in
appendix 9.

If the circuit contains resistors, the natural frequencies are
typically complex numbers; then, imaginary part of the com-
plex number gives the exponential decay of the corresponding
mode: I = e−iωit sin(ωrt + φ), where ωr and ωi stand for the
real and imaginary parts of the natural frequency, respectively.
If the impedance of a circuit is not dominated by inductors and
capacitors, there are frequencies for which ωi = 0. For instance,
one can say that the natural frequency of a simple RC-circuit
is ω = i/RC; indeed, with I = I0eiωt = I0e−t/RC we recover
the fact 12.

fact 24: Suppose at a certain circular frequency ω, imped-
ance is very large, 1

Z(ω) ≈ 0. Then, a very small current driven
to the leads will give rise to a very large voltage V = IZ; this
phenomenon is called the voltage resonance. Similarly, if the
impedance is very small, Z(ω) ≈ 0, we have a current reson-
ance: small input voltage will lead to a large current.

idea 48: The natural frequencies can be found as the reson-
ance frequencies; there are two options. First, you can select
two points A and B at the circuit, henceforth referred to as
the fictitious terminals, and equate the impedance of the cir-
cuit between A and B to infinity and solve the equation with
respect to the frequency: although there is no input current,
there can be voltage oscillations at a resonant frequency, be-
cause with V = IZ, I = 0, and Z = ∞, V can take any value.
Second option: select a point A the circuit and cut the cir-
cuit fictitiously at that point. Thus, one “half” of the point A
becomes the first terminal A1 of the new circuit, and another
“half” becomes the second terminal A2. Since in the original
circuit, A1 and A2 coincide, they must have the same voltage:
voltage between A1 and A2 is zero. Finally, equate the imped-
ance between A1 and A2 to zero and solve it: although the
voltage is zero, there can be a non-zero current I = U/R.

The technique described by this idea is a shortcut substitut-
ing the standard method for finding natural frequencies. The
standard method involves two steps: (a) writing down the
full set of linear homogeneous differential equations using the
Kirchoff’s laws for the circuit; (b) writing down the charac-
teristic equations where derivatives of an unknown function
are substituted by powers of an unknown variable (cf. Formula
sheet pt. I-3). When we use the idea 48, we basically bypass
the first step and obtain directly the characteristic equation by
equating the impedance (or its reciprocal) to zero.

As an illustration, let us consider a simple circuit where a
resistor of resistance R, inductor of inductance L, and a capa-
citor of capacitance C are connected in series. If we denote
the charge of the capacitor as q, the current in the circuit is
expressed as I = dq

dt so that the Kirchoff’s voltage law gives us
a differential equation

L
d2q

dt2
+R

dq
dt

+ q

C
= 0;

the corresponding characteristic equation is Lλ2 +Rλ+C−1 =
0. Meanwhile, if we “cut” one of the wires then the impedance
will be Z = iωL+R+ 1

iωC = 0; this equation can be rewritten
as Z(ω) ≡ −ω2L + iωR + C−1 = 0, which is identical to the

35Resistances connected in series to inductors are small, and resistances connected in parallel to capacitors are large.
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characteristic equation with λ = iω. This equation yields

ω = iR
2L

±
√

(LC)−2 − R2

4L2 .

When using impedances we assume that the temporal depend-
ence of all the quantities is proportional to eiωt. Therefore, the
impedance is zero and free current oscillations are possible with

I = I0eiωt = I0e− R
2L te±iω0t,

where ω0 ≡
√

(LC)−2 − R2

4L2 . Let us recall now that with
complex-number-representation, we assume that the real cur-
rent value is given by the real part of a complex number; with
a complex amplitude I0 = |I0|eiφ, this leads us to a real-valued
solution I = |I0|e− R

2L t cos(ω0t± φ).
It is useful to keep in mind that the idea 48 can be applied

not only in the case of LC-circuits, but also in the case of L−R
circuits and R − C circuits in which case the solution of the
equation Z(ω) = 0 will be purely imaginary, corresponding to
an oscillation-less exponential decay. In such cases, it is more
convenient to subsitute iω = −γ which corresponds to expo-
nential dependence of currents and voltages, proportional to
e−γt. With such substitution, the impedance of a capacitance
C becomes − 1

γC , and that of an inductance L — −γL; the
current resonant condition remains still the same, Z(γ) = 0.

Finally, it should emphasized that with a low probability,
for symmetric circuits, one or more natural frequencies may be
lost with this method. Therefore, it is a good idea to compare
the number of obtained frequencies ω(> 0) with the expected
number (deduced using the idea 47). Losing one or more solu-
tions in such a way is actually not a bad thing, because losing
a solution means obtaining a lower-degree equation for x = ω2

which is easier to solve. The “lost” solutions can be recovered;
one option is to “cut” the circuit at a different place (or to
add fictitious nodes to different places if the voltage resonance
approach is used). If the resulting circuit is non-symmetric,
the obtained equation for x = ω2 will have its degree (and the
number of different solutions) equal to the number of degrees
of freedom of the original circuit. Among the solutions, there
are also the ones we already know based on the symmetric cir-
cuit. Therefore, it would be possible to reduce the degree by
long dividing the corresponding polynomial with x−x1, where
x1 is a known solution.

However, in many cases, there is actually no need to long
divide the polynomial, because an easier method exists. Be-
fore we proceed to this method, let us analyse first why one or
more solutions were lost. When the current resonance method
is used, some natural frequencies will be lost if the circuit is
“cut” at such a point A where one of the natural modes has (due
to symmetry) always zero current: for such an oscillation mode,
the circuit terminals A1 and A2 will have, in addition to a zero
voltage, also a zero current; hence the impedance does not need
to be vanishing. Similarly, when the voltage resonance method
is used, a natural frequency is lost if the corresponding mode
has always zero voltage between the fictitious terminals A and
B.

Keeping this is mind, it becomes evident how to recover the
lost solutions in the most efficient way. In the case of current
resonance, we use the fact that for the lost modes (which we

want to recover), the voltage between the fictitious terminals
is constantly zero, hence we can short-circuit these terminals
and thereby simplify the circuit. For those “lost” modes, the
new circuit is no different from the old circuit, so among the
solutions of the new circuit, there must be the “lost” frequency.
Analogously, if the solutions were lost when the voltage reson-
ance condition was used, the lost solutions are among the nat-
ural frequencies of the cut circuit (terminals A1 and A2 remain
disconnected).

However, one must keep in mind that such a simplified cir-
cuit may have other natural frequencies (additional to the pre-
viously “lost” solutions), possibly different from the natural
frequencies of the original circuit. So, the method is safe, if
the simplified circuit has as many natural frequency as is the
number of the “lost” solutions (otherwise we would need to
study, which of the solutions of the simplified circuit are the
“lost” solution of the original circuit).

Let us sum up what has been said above as

idea 49: When finding the natural frequencies of a circuit
obeying certain symmetries while using the idea 48, it is useful
to exploit the symmetry: select symmetric positions for the fic-
titious terminals (for which Z = ∞), or select symmetric point
for “cutting” (Z = 0). This will lead to the loss of one or more
solutions which can be found as the natural frequencies of a
simplified circuit — we either short-circuit the fictitious ter-
minals (if Z = ∞ was used), or we leave the “cut” wire broken
(if Z = 0 was used). NB! count carefully the number of solu-
tions36: if the number of degrees of freedom of the simplified
circuit exceeds the number of “lost” solutions then some of the
natural frequencies of the simplified circuit may differ from the
frequencies of the original circuit.

To show how to count the number of modes and to make use
of the symmetry of the problem, let us consider the following
problem.

pr 89. Find the natural frequencies of the circuit shown in
the figure.

Using the fact 8, we can easily conclude that the maximal
number of linearly independent loops is four (red arrows in fig-
ure).

36When counting the number of frequencies, keep in mind that an equation for finding frequencies may have repeated roots; double root needs to
be counted twice, triple root trice, etc.
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Since the circuit consists of only inductors and resistors, we
could expect the number of natural frequencies to be also
four. However, we need to pay attention that one can find
one current loop consisting only of inductors (blue arrow).
Therefore, we have 4-1=3 non-zero frequencies, and 1 zero fre-
quency. The circuit has mirror symmetry which we are go-
ing to use: we use nodes A and D (see figure) for voltage
resonance, and require ZAD = ∞. When calculating ZAD,
the nodes A and D serve as the terminals; then, due to sym-
metry, potentials of the nodes B, O, and E are equal (because
zAB/zBD = zAO/zOD = zAE/zED, where zXY denotes the
impedance of the component connected directly between the
nodes X and Y ), hence there is no current in the wires BO
and OE which can be removed without changing the imped-
ance ZAD. Then there are three parallel paths connecting A

and D, out of which the paths ABD and AED can be re-
placed with a single equivalent inductor of inductance 3

2L; the
two capacitors in the path AOD can be replaced with a single
capacitor of capacitance 2

3C. So, we resulted in a circuit with
one capacitor and one inductor, and which has clearly only one
resonance frequency ω1 = 1/

√
LC. Next, we’ll proceed in the

same way, but now we select the nodes B and E as the ter-
minals for voltage resonance. In a very similar way, we end up,
again, with an equivalent circuit consisting of one inductor of
inductance 4

3L and one capacitor of capacitance C; the corres-
ponding natural frequency ω2 = 1/

√
4
3LC.

We have found two frequencies, but there are three in total.
In the first step, we missed those natural modes which had zero
voltage between A and D; in the second step, we missed those
natural modes which had zero voltage between B and E. So,
now we can be missing only those modes for which both these
voltages are zero, i.e. we can connect the nodes B and E with
a wire, and also connect the nodes A and D with a wire; the
resulting circuit must have the missing frequency as one of its
natural frequencies. Once we merge nodes B with E and D

with A, we have only three nodes: B (with E) is connected to
O via an effective capacitance 4C; A (with D) is connected to
O via an effective capacitance 3C; A (with D) is connected to
B (with E) via an effective inductance 1

3L. This circuit has
only one degree of freedom and hence, its natural frequency is
the “lost” frequency of the original circuit, ω3 = 1/

√
4
7LC.

So, we were lucky in that the number of missing natural
frequencies was equal to the number of degrees of freedom of
the simplified circuit. What should have been done if that were
not the case? Of course, we could have written down the im-
pedance for a pair of non-symmetric terminals; in that case we
would have ended up with a cubic equation for which we know

already two solutions. However, that would have been long
way. Meanwhile, we know that the missing solution is, in fact,
very symmetric; would it be possible to use this fact? It ap-
pears, yes! We can make use of the voltage equalities VB = VE

and VD = VE to conclude that in the case of the missing os-
cillation mode, the loop currents 1–4 (as shown in the figure)
satisfy equalities I2 = I3 = 2I1 = 2I4. With this knowledge,
we can write down Kirchoff voltage law, for instance, for the
first loop: (I1 + I4)/(iωC) + (I1 + I2)/(2iωC) + 2iI1ωL from
where we obtain easily the same result as before.

pr 90. [IPhO-1983] Let us consider the electric circuit in
the figure, for which L1 = 10 mH, L2 = 20 mH, C1 = 10 nF,
C2 = 5 nF, R = 100 kΩ. The switch K being closed, the circuit
is coupled with a source of alternating current. The current fur-
nished by the source has constant intensity while the frequency
of the current may be varied.

L 1

C1

L2

C2

R

i01

i02

A

B

K

(a) Find the ratio of frequency νM/∆ν, where νm is the fre-
quency for which the active power in circuit has the maximum
value Pm, and the frequency difference ∆ν = ν+ − ν−, where
ν+ and ν− are the frequencies for which the active power in
the circuit is half of the maximum power P = 1

2Pm.
The switch is opened in the moment t0 when there is no current
through the resistor. Immediately after the switch is open, the
intensities of the currents in the coils L1 and L2 are respect-
ively i01 = 0.1 A and i02 = 0.2 A. (the currents flow as in the
figure); at the same moment, the potential difference on the
capacitor with capacity C1 is U0 = 40 V.
(b) Calculate the frequency of electromagnetic oscillation in
L1C1C2L2 circuit;
(c) Determine the intensity of the electric current in the AB
conductor;
(d) Calculate the amplitude of the oscillation of the intensity
of electric current in the coil L1.

The idea 38 is useful in the case of AC, as well; let us
formulate this as another idea, which can be used to find qual-
itatively or asymptotically37 the dependence of something on
the frequency of the input signal, or to simplify the analysis ac-
cording to the idea 90 in those cases when the circuit includes
both large and small inductances and/or capacitors.
idea 50: At the limit of low frequencies, capacitors can be
“cut off”, and inductors — “short-circuited”; similarly, at the
limit of high frequencies, inductors can be “cut off”, and capa-
citors — “short-circuited”. Systematic analysis assumes that all
the appropriate limit cases are considered, e.g. for ω ≪ 1/RC,
|ZC | ≪ |ZR| and hence, if connected in parallel, the resistor
can be “cut off”, and if connected in series, the capacitor can

37at the limit of high- or low frequencies

— page 31 —



2. CIRCUITS INCLUDING CAPACITORS AND INDUCTANCES

be short-circuited.

Keep also in mind that at a voltage resonance, a parallel L−C

connection has an infinite impedance, and can be cut off; sim-
ilarly, at the current resonance, a series L− C connection has
a zero impedance, and can be short-circuited.

pr 91. In a black box with two ports, there are three com-
ponents connected in series: a capacitor, an inductance, and a
resistor. Devise a method to determine the values of all three
components, if you have a sinusoidal voltage generator with
adjustable output frequency ν, an AC-voltmeter and an AC-
ammeter.

idea 51: Mathematically, electrical oscillations are ana-
logous to the mechanical ones, which are usually studied by
writing down differential equations. Method of impedances al-
lows us to bypass this step. Based on the resonance condition
Z(ω) = 0, it is also possible to make a “reverse-engineering”
and deduce the corresponding differential equation using a
simple rule: a factor iω corresponds to a time derivative (hence,
a factor −ω2 corresponds to a second derivative). The safest
method for verifying the equivalence of a mechanical system
with an electrical one is to write down the differential equations
(or systems of differential equations, if appropriate) describing
the both systems and verify that these two are mathematically
equivalent. The matching scheme is usually as follows: a ca-
pacitor’s charge or loop current’s time integral corresponds to
a coordinate of a point mass; an inductance — to a mass; a
capacitance — to a spring’s stiffness.

pr 92. [IPhO-1987] When sine waves propagate in an infin-
ite LC-grid (see the figure below) the phase of the AC voltage
across two successive capacitors differs by φ.
(a) Determine how φ depends on ω, L and C (ω is the angular
frequency of the sine wave).
(b) Determine the velocity of propagation of the waves if the
length of each unit is l.
(c) State under what conditions the propagation velocity of the
waves is almost independent of ω. Determine the velocity in
this case.
(d) Suggest a simple mechanical model which is an analogue
to the above circuit and derive equations which establish the
validity of your model.

CC CL L

l l

In general, when dealing with two-dimensional problems,
complex number analysis is a more powerful tool than a vector
analysis, because everything what can be done with vectors,
can be also done with complex numbers: addition and subtrac-
tion, multiplication with a constant, and even the scalar and
vector products (although this is a little bit more tricky, see be-
low), but there are many more things what can be done with
the complex numbers (addition, division, taking powers and
exponents, etc). A hint for the way of obtaining scalar- and
vector products can be found in the idea 45: if we take two com-
plex numbers z1 and z2, and consider the product z1z2, then

ℜz1z2 equals to the scalar product of the respective vectors
z⃗1 and z⃗2, and ℑz1z2 equals to the z-component of the vector
product z⃗2 × z⃗1 (assuming that the real axis corresponds to
the x-axis, and the imaginary axis — to the y axis). However,
regardless of what have been said, there are cases when it is
more convenient to deal with vector diagrams of voltages and
currents, rather than with the complex amplitudes.

idea 52: If an AC-circuit problem turns out to be essentially
a geometrical problem, it is better to use vector diagrams in-
stead of complex amplitudes, i.e. to draw the vectors corres-
ponding to the complex amplitudes, and to study the problem
geometrically; keep in mind that using scalar product and rms.
amplitudes, P = U⃗ · I⃗. Geometrical knowledge which can be
useful: Thales theorem, inscribed angle theorem, laws of sines
and cosines

pr 93. The circuit consists of a capacitor, inductance, and
two resistors, see figure. The voltage on both resistors is 10 V,
and the voltage between the leads A and B is also 10 V. Find
the applied voltage U0.

Problems involving ideas 44–52
pr 94. Consider a so-called Maxwell’s bridge shown in fig-

ure below, which is used for measuring the inductance L and
the ohmic resistance R of an inductor. To that end, the other
parameters are adjusted so that the voltage reading will be
zero. Assuming that such a state has been achieved, express L
and R in terms of R1, R2, RC and C.

pr 95. Below a circuit is given which makes it possible to
adjust the phase of a voltage signal. Show that if the output
current is negligibly small, its voltage amplitude will be the
same as at the input leads, but with a different phase. Find
the phase shift.

pr 96. A remote summer house receives electricity from a
power station over a rather long cable. To check the status
of the cables, the power meter can also measure the voltage
supplied to the household. People left the summer house, and
switched all the other electricity devices off, but forgot the
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transformer under the voltage (the transformer was used for
feeding low-voltage lamps). The transformer can be considered
as a series connection of an inductance L and ohmic resist-
ance r. Readings at the power meter of the house: when the
transformer was switched on, voltage U1 = 234.0 V and power
consumption P1 = 5 W;
when everything was switched off, voltage U0 = 236.0 V;
when the transformer is off, but an electric oven is switched on:
electrical power P2 = 1200 W, and voltage U2 = 219.6 V (oven
is a purely ohmic resistance R).

You may assume that the voltage at the power station (to which
the cables are connected) is always constant. Determine the
power of electrical energy which was dissipated in the power
cables (connecting the house with the power station).

pr 97. A circuit consists of two identical inductances, two
identical resistors, and two identical capacitors, see figure. The
applied voltage U0 = 10 V; the voltage on the lower inductance
is 10 V, and the voltage between the leads D and E is also 10 V.
Determine the voltage between the leads B and D.

pr 98. A circuit consists of two identical inductances, two
identical capacitors, and one resistor, see figure. The applied
voltage is U0 = 10 V, and the total current at the input leads
is I0 = 1 A; the voltage measured at the left capacitor is 10 V,
and 10 V is also measured at the left inductance. What is the
active power dissipated in this circuit and what is the resistance
of the resistor?

pr 99. Find the natural frequencies of the circuit given be-
low.

pr 100. Edges of a dodecahedron are made of wire of neg-
ligible electrical resistance; each wire includes a capacitor of
capacitance C, see figure. Let us mark a vertex A and its three
neighbours B, D and E. The wire segments AB and AD are
removed. What is the capacitance between the vertices B and
E?

pr 101. Determine all the natural frequencies of the circuit
shown in Figure. You may assume that all the capacitors and
inductances are ideal, and that the following strong inequalities
are satisfied: C1 ≪ C2, and L1 ≪ L2. Note that your answers
need to be simplified according to these strong inequalities.

pr 102. [Adapted from IPhO-1984] An electronic frequency
filter consists of four components as shown in figure: there are
two capacitors of capacitance C, an inductor L, and a resistor
R. An input voltage Vin is applied to the input leads, and
the output voltage Vout is measured with an ideal voltmeter
at the output leads, see figure. The frequency ν of the input
voltage can be freely adjusted. Find the ratio of Vout/Vin and
the phase shift between the input- and output voltages for the
following cases: (a) at the limit of very high frequencies; (b)
at the limit of very low frequencies; (c) in the case of such a
frequency ν0 for which there is no voltage on the resistor; (d) in
the case of such a frequency ν1 for which the power dissipation
in the circuit is maximal (assuming that the amplitude of the
input voltage is kept constant). Find also the frequencies ν0
and ν1.

pr 103. [IPhO-2014] Initially: switch S in the circuit below
is open; the capacitor of capacitance 2C carries electric charge
q0; the capacitor of capacitance C is uncharged; and there are
no electric currents in either the coil of inductance L or the
coil of inductance 2L. The capacitor starts to discharge and at
the moment when the current in the coils reaches its maximum
value, the switch S is instantly closed. Find the maximum
current Imax through the switch S thereafter.
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pr 104. [Est-Fin-2016] A dimmer for controlling the bright-
ness of lighting consists of a rheostat, a capacitor, a diac and
a triac, connected as in the circuit.

∼U , f

R

C

I

U
Ud Ub

−Ud−Ub Ib

:

A diac is a component whose behaviour is determined by
the voltage-current diagram shown above. A triac , on the
other hand, can be thought of as a switch controlled by current
— look at the following equivalent schematics.

gate anode 1

anode 2
≈

gate

anode 1

anode 2

K t
Rt

The switch Kt is open as long as the current through the
triac’s gate stays under the threshold current It; closes when
the threshold current is applied (in either direction) and stays
closed while a current is flowing through the switch Kt (the
gate current is irrelevant until the switch opens again).

(a) Assume that the resistance Rt is large enough that the
charge moving through the diac can be neglected. Let the si-
nusoidal supply voltage have a maximum value of U and a
frequency of f ; the rheostat be set to the resistance R and the
capacitor’s capacitance be C. Find the maximum value of the
voltage UC on the capacitor, and its phase shift φ with respect
to the supply voltage.

(b) What inequality should be satisfied by the diac’s charac-
teristic voltages Ub and Ud, triac’s threshold current It and
gate resistance Rt to ensure that when the diac starts to con-
duct (while the voltage on the capacitor rises), then the triac
would also immediately start to conduct? You may assume
that Ib < It and that the diac’s voltage at current It is Ud.

(c) The voltage Ul on the lamp follows the plot above. Let’s
assume that the assumption of part i) and the inequality of
part ii) hold. Find the time t0 during which the voltage on the
lamp is zero.

(d) Express through t0 and f , how many times the average
power of the lamp is lower than the one of a lamp without a
dimmer, assuming that the resistance of the lamp is unchanged.

pr 105. In the circuit below, R =
√
L/C. A rectangular

voltage waveform of period τ and amplitude V0 is applied to the
input ports (this means that during half of the period, the in-
put voltage is V0, and during the other half-period, the voltage
is −V0). Find the shape and amplitude of the current flowing
through the input ports.

pr 106. Find the natural frequencies for the circuit below.

pr 107. For the circuit shown below, the frequency of the
sinusoidal input voltage is unknown; given the capacitance C,
inductances L1, L2, resistances R1, R2, amplitude of the input
voltage V0, and the phase shift φ between the currents through
the nodes A and B, determine: (a) the amplitude of the voltage
VAD between the nodes A and D; (b) the phase shift between
the voltages VAD and VDB .

pr 108. For the circuit shown below, the frequency of the si-
nusoidal input voltage is unknown; given the capacitance C, in-
ductance L, resistances R1, R2, amplitude of the input voltage
V0, and the phase shift φ between the inductor current and
input voltage, what is the phase shift between the capacitor
voltage and output voltage?

pr 109. In the circuit shown in the figure, the sinusoidal
input voltage has a fixed amplitude V0 and frequency f . What
is the maximal amplitude of the output voltage, and for which
values of the variable resistances R1, R2, and R3 is the maximal
amplitude achieved?
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pr 110. Find such frequencies of the input voltage ω for
which the circuit shown below has zero impedance.

pr 111. Find such frequencies of the input voltage ω for
which the circuit shown below has zero impedance.

appendix 5: Euler’s formula
The standard way of generalizing a function F (x) from its real

argument x to complex argument z is by using a Taylor expan-

sion:

F (x) = F (x0) +
∑

F (n)(x0)(x− x0)n/n! :
in such a power series, we can just substitute x with z. Here,

F (n)(x0) stands for the n-th derivative of F (x), calculated at

x = x0. The structure of this power series is quite easy to un-

derstand: if we truncate it by keeping only the �rst N terms,

it approximates the function F (x) with such a polynomial of

N -th order for which the �rst N derivatives at x = x0 are equal

to those of the function F (x). Furthermore, the thrown-away

terms with n > N are small if |x−x0| is not very large, because
the denominator grows rapidly with n. By keeping more and

more terms, the approximation becomes increasingly accurate,

so that at the limit N → ∞, the series becomes equal to the

function.

With x0 = 0, the Taylor series for the exponent, sine, and

cosine functions are written as

ex =
∞∑

n=0

xn

n!
,

sin(x) =
∞∑

k=0

(−1)kx2k+1

(2k + 1)!
,

cos(x) =
∞∑

k=0

(−1)kx2k

(2k)!
.

Now, if we substitute in the expression of ex the argument x

with ix, we obtain

eix =
∞∑

n=0

(ix)n

n!
=

∞∑
k=0

[
(ix)2k

(2k)!
+ (ix)2k+1

(2k + 1)!

]
=

=
∞∑

k=0

[
i2kx2k

(2k)!
+ i · i2k · x2k+1

(2k + 1)!

]
.

Let us notice that i2k = (i2)k = (−1)k; if we compare now the

series expansion for eix, and those of sin x and cosx, we see

that

eix = cosx+ i sin x.

appendix 6: Exponent of a sum of two complex
numbers

For real-valued arguments, the property ea+b = ea ·eb is an easy

generalization from the same rule for integer arguments. This

is a very useful property, and actually the only reason why the

exponential function is easier to deal with than sine or cosine,

but it is not obvious why it should held for complex-valued ar-

guments. Since we generalized ex to complex-valued arguments

via the Taylor expansion, this series is the only thing we can

use to prove the validity of this property. So, we start with

ea+b =
∞∑

n=0

(a+ b)n

n!
,

where a and b are complex numbers. Here we need the binomial

theorem (see appendix 7),

(a+ b)n =
n∑

k=0

(
n

k

)
akbn−k =

n∑
k=0

n!
k!(n− k)!

akbn−k,

which leads us to

ea+b =
∞∑

n=0

n∑
k=0

n!
k!(n− k)!

akbn−k

n!
==

∞∑
n=0

n∑
k=0

ak

k!
bn−k

(n− k)!
.

Now, let us substitute m = n−k; in this double sum, as n goes

from 0 to ∞, and k goes from 0 to n, the pair of numbers k,m

takes all the possible integer-valued combinations, with both

m and k varying from 0 to ∞:
∞∑

n=0

n∑
k=0

ak

k!
bn−k

(n− k)!
=

∞∑
k=0

∞∑
m=0

ak

k!
bm

m!
.

This double sum can be factorised, because one factor doesn't

depend on m, and the other one � on k, and constant terms

(independent of the summation index) can be brought before

the summation sign (before the braces):
∞∑

k=0

∞∑
m=0

ak

k!
bm

m!
=

∞∑
k=0

( ∞∑
m=0

ak

k!
bm

m!

)
=

∞∑
k=0

[
ak

k!

( ∞∑
m=0

bm

m!

)]
=

( ∞∑
k=0

ak

k!

)( ∞∑
m=0

bm

m!

)
= ea · eb.

appendix 7: Newton binomial formula
If we open the n braces in the expression (a+ b)n, we'll have a

sum of terms where each term is a product of n factors, each

of which is either a or b. In that sum, akbn−k will arise as

many times as many di�erent possibilities there is for select-

ing exactly k braces out of the total n braces: from the �se-

lected� braces we pick a as the factor entering a term in the

de-factorised sum, and from the �non-selected� braces we pick

b). This so-called number of k-combinations from a set of n

elements is denoted by
(

n
k

)
.

In order to �nd the number of possibilities for selecting k ob-

jects out of n objects, let us enumerate all the objects with

numbers from 1 till n. The number of permutations (di�erent

ways for ordering these enumerated objects) is n! (there is n

di�erent ways for picking the �rst object, n− 1 for picking the

second, etc). In the case of each ordering of the objects, we

�select� the �rst k ones. If we go through all the di�erent or-

derings, we de�nitely obtain all the di�erent ways of selecting

k objects, but each selection will be obtained many times: as

many times as we can re-order objects within a given selection.

The selected object can be re-ordered in k! di�erent ways, and
the non-selected objects � in (n− k)! di�erent ways. In order

to obtain the number of di�erent ways of selecting k objects,

we divide the overall number of permutations by the number

of di�erent ways of re-ordering, which results in
(

n
k

)
= n!

k!(n−k)! .
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appendix 8: Basic properties of complex numbers
Complex numbers can be thought of as two-dimensional vec-

tors: the real part of a complex number z = x + iy de�nes

the x-coordinate of a vector, and the imaginary part � the

y-coordinate. What di�ers complex numbers from vectors is

that two complex numbers can be multiplied so that the result

is still a complex number (there is a vector product of two vec-

tors, but if we have two-dimensional vectors lying in x−y-plane,
the resulting vector will no longer lie in that plane). Because

of that, you can also divide two non-complex numbers with a

uniquely-de�ned result � as long as the divisor is not zero (you

cannot divide two non-parallel vectors!).

The modulus of a complex number is de�ned as the length

of the corresponding vector, |z| =
√
x2 + y2. Bearing in mind

the geometrical (vectorial) representation and using Euler's for-

mula, we can write

z = |z|(cosα+ i sinα) = |z|eiα,

where α is the angle between the vector and the x-axis; this

is called the exponential form of a complex number, and α is

called the argument (arg) of the complex number. Apparently,

α = arctan y/x = arctan ℑz/ℜz.

Now, if we consider the product of two complex numbers,

z1 · z2 = |z1|eiα1 |z2|eiα2 = |z1||z2|ei(α1+α2).

Here, the right-hand-side of the equality is an exponential rep-

resentation of the complex number z1z2,which means that

|z1z2| = |z1||z2|,
and

arg z1z2 = arg z1 + arg z2.

Similarly, of course, |z1/z2| = |z1/z2| and arg z1/z2 = arg z1 −
arg z2.

Here is a list of simple but sometimes useful formulae:

ℜz = 1
2

(z + z),
where z = x− iy is called the complex conjugate of z;

|z|2 = zz.

Note that z is a vector symmetric to z with respect to the

x-axis, and therefore

eiα = e−iα;
in particular, applying these two formulae for z = eiα results

in

cosα = eiα + e−iα

2
, sinα = eiα + e−iα

2i
.

If you need to get rid of a complex number in a denominator

of a fraction, you can use equality
z1

z2
= z1z2

|z2|2
.

appendix 9: Determining the number of natural
modes of electrical circuits
If we need to �nd the natural frequencies of a certain circuit, it

can be done by using the method of loop currents: we need to

select a full set of linearly independent current loops (cf. idea

13), consider the corresponding loop currents (which are now

AC currents de�ned by complex amplitudes), and write down

for each current loop the Kircho�'s voltage law. This will give

us a set of N linear equations for �nding N unknown currents,

where N denotes the total number of current loops. For nat-

ural oscillation modes, there are no AC sources in the circuit,

so this set of linear equations is a homogeneous system which

has non-zero solutions (which are the natural oscillation modes)

only if its determinant is zero. Equating the determinant of the

system to zero gives us an algebraic equation for �nding the os-

cillation frequencies ω. The degree of the equation is found

as the sum of the degrees of the individual equations. An in-

dividual equation describing a certain current loop has degree

2 if it includes at least one capacitor and one inductor; it has

degree 1 if it includes at least one resistor together with at least

one capacitor or at least one inductor; �nally, it has degree 0

if all its elements are of the same type (resistors, inductors, or

capacitors). If we denote the number of such loop types as

NLC , N ̸=, and N= respectively, the degree of the equation is

expressed as

Nd = 2NLC +N ̸=.

According to the fundamental theorem of algebra, the num-

ber of complex-valued roots of such equation is also Nd. How-

ever, not all roots will correspond necessarily to di�erent os-

cillation modes. Indeed, if there is a pair of solutions in the

form ω = ±ω0 − γ, the corresponding current oscillations can

be combined into one mode

I1eiω0t−γt + I2e−iω0t−γt = I0e−γt cos(ω0t+ φ),
where φ is the oscillations phase. Conversely, if there is an os-

cillating mode (possibly decaying-in-time) I0e−γt cos(ω0t+ φ),
there must be two corresponding solutions of the algebraic equa-

tion for ω (with equal imaginary parts and opposite real parts).

To sum up, if we denote with No the number of oscillatory

modes, and with Ne the number of such modes which decay

without oscillations, the following equality holds:

2No +Ne = 2NLC +N ̸=.

Finally, the number of zero-frequency modes equals to the num-

ber of such linearly independent loops which have only induct-

ors in it, because in that case, with ω = 0, the corresponding

loop current is eliminated from all the equations so that it can

take arbitrary value.

Hints
1. Determine the surface area under the graph(count the cells

or approximate the shape with a set of trapezoids; pay at-
tention to the units of your surface area (mm·m).

2. The sum of the voltages on R1 and R2 is constant,
I1R1 + I2R2 = Const, hence one can find the change of
current through R2. Initially, I1 = I2; later, the difference
of these two currents goes to the lamp.

3. Resistors 4 and 5 are connected in parallel between B and
C.

4. Due to symmetry, there is no current through the bridge
resistor, hence it can be removed (the both leads of it
divide the overall voltage between the input leads of the
circuit in 2:3-proportion).

5. Find the currents in the upper resistors (2 Ω and 3 Ω) by
short-circuit the ammeter; the difference of these two cur-
rents goes to the ammeter.

6. For a voltmeter, the reading is proportional to the current
through it. Hence, you can find the current through V2;
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use the Kirchoff’s current law for finding the ammeter’s
current.

7. The sum of the voltmeters’ readings is related to the sum
of their currents:

∑15
i=2 Vi =

∑15
i=2 rIi = r

∑15
i=2 Ii, which

equals to A2, as it follows from the idea 8 for the region
marked with a red line in the figure below; here, r is the
voltmeters’ internal resistance.

8. The left three resistors form a ∆-connection which can be
substituted by a Y -connection consisting of 1 Ω-resistors.

10. Substitute the entire circuit in figure with an equivalent
battery with Eeff = E R2

r+R1+R2
.

11. When solving using the idea 10: first find the internal
resistance of an equivalent battery; the equivalent electro-
motive force will be found by comparing the currents of
the two systems when the ports are short-circuited. When
using the idea 11: substitute all the batteries with current
sources; for a parallel connection of current sources, the
currents are just added, so it is easy to substitute a set
of current sources with a single equivalent current source
(and at the final step, the current source with a battery).

12. Assume that E1 is short-circuited and calculate the cur-
rents through the batteries I1n, n = 1 . . . 4; then as-
sume that E2 is short-circuited and calculate the currents
through the batteries I2n n = 1 . . . 4. The final answers
will be I1n +I2n, n = 1 . . . 4. Alternatively, show that after
mirroring the circuit with respect to the vertical axis, it re-
mains identical to itself, but the currents through R2 and
R4 will be reversed, hence these currents need to be zero,
hence these resistors can be “cut” off.

15. As mentioned, the numerical values are such that in SI-
units, each “resistance” of the dual circuit is numerically
exactly 4 times smaller than the corresponding resistance
of the original circuit. Therefore, the total “resistance” of
the dual circuit must be also 4 times smaller, 4R⋆ ·Ω2 = R.
On the other hand, the “resistance” of the dual circuit
equals to the resistance of the original circuit, R⋆ = 1/R;
from here, we can immediately obtain the answer.

17. Assume that the circuit is equivalent to a battery of elec-
tromotive force E and internal resistance r; then write
equations for E and r analogously to how it was done for
problem 16.

18. If a current I is let into one of the leads, it is distributed
equally between the three branches: I/3 flows in each. At
the next junction, each of these currents is divided equally,
again, so that the next wires have current equal to I/6.

19. For node-merging: merge B with F and C with E so that
A will be connected with the merged BF node (and BF

with CE) via a R/2-resistance. For edge-splitting: split
OD into resistors OD′ and OD′′, each of resistance 2R.

21. Consider symmetric current distributions: (A) I is driven
into one vertex (P ), and I/19 is driven out from all the
other 19 vertices; (B) I is driven out from a neighbouring

vertex of the vertex P , and I/19 is driven into all the other
19 vertices.

22. Reduce this problem to the previous one by representing
the missing wire as a parallel connection of R and −R: the
resistance of all the other resistors, except for the −R, is
given by the answer of the previous problem.

23. For the first half of the process, the transitions of the states
of the resistors will take place at the overall voltage values
V1 = 1.5 V and V2 = 5 V; for the second half, the respect-
ive transition voltages are V ′

2 = 3 V and V ′
1 = 1.25 V.

24. The diode current can be expressed as E − IR; draw this
straight line onto the graph provided, and find the inter-
section point.

25. Find the tunnel diode current exactly in the same way as
for problem 24; let the intersection point voltage be V0.
Find the cotangent Rt = ∆V/∆I of the I(V )-curve at
that voltage (note that Rt < 0). Substitute the tunnel di-
ode with a series connection of a battery of electromotive
force V0 and resistance Rt. If the input voltage changes
by ∆V , the current will change by ∆I = ∆V/(R + Rt),
and the output voltage will change by R∆I, hence the
amplification factor n = R∆I/∆V .

27. Keep 4 more wires(four red ones in the left figure below);
short-circuit only four nodes as shown in figure; then, due
to symmetry, the middle point C of the green wire can be
also merged with the short-circuited nodes (because both
will have the same potential if a voltage is applied between
the leads A and B).

28. For the original polarity, the two leftmost diodes are open,
i.e. these can be short-circuited (resulting in a parallel
connection of the three leftmost resistors), and the third
diode is closed, i.e. can be “cut” off. For the reversed po-
larity, the states of the diodes are reversed: the rightmost
diode is open and short-circuits the four rightmost resist-
ors (which can thus be removed), and the other diodes are
closed so that the three leftmost resistors are connected in
series.

29. The voltage on the first diode is 1 V, hence the other di-
odes have a lesser voltage applied (resistors take also some
voltage), and are closed. As a result, the first diode can
be replaced by a battery of 1 V, and the other diodes —
“cut off”. The power dissipation on the first diode is found
as its voltage (1 V) times the current through it.

30. Calculate the electromotive force and internal resistance of
the battery which is equivalent to the set of four resistors
and the battery; internal resistance calculation can be sim-
plified, if the three ∆-connected resistors are substituted
with a Y -connection.

31. Substitute the three resistors and the battery with an equi-
valent battery with an internal resistance r; thus the prob-
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lem is reduced to Pr. 24.
32. Note that IA/IB = RB/RA = 2, hence the fuse A will

melt first. Pay attention that in the second case, the fuse
B tolerates more current than the overall current by which
the fuse A melts.

33. The circuit breaks down into a combination of series- and
parallel connections. Using the given voltage values, one
can conclude that Rr

R+r = 2
3

2Rr
2R+r , where r is the volt-

meter’s resistance.
34. The radiated heat AT 4 equals to the electrical power V I;

also, R = V/I = BT (where A and B are constants).
35. First we apply the idea 6 and substitute the ammeters

with wires; then we apply the idea 5: the two vertically
positioned resistors connect directly the battery leads; the
other four resistors form two pairs of parallel-connected
resistors (these pairs are connected in series).

36. Apply the idea 6: the circuit becomes a combination of
parallel and series connections; find ammeter current us-
ing Kirchoff’s current law.

37. Apply the idea 6; find ammeter currents using Kirchoff’s
current law (keep in mind that due to symmetry, all the
ammeters have the same current by modulus).

38. The voltage distribution between the voltmeters in this
circuit is defined by the ratio of the resistor’s resistance
R and the voltmeter’s internal resistance r. If we express
the ratio V3/V1 = 0.8 in terms of r/R (the battery voltage
cancels out from this equation), we obtain a square equa-
tion for x = r/R. Once we know r/R, we can also find
V2/V1.

39. Apply the result of the problem 11 for the particular case
of three batteries (one of which has E = 0).

40. Since there is no current through the ammeter, it can be
“cut” off. Additionally, since there was no current in the
ammeter, the voltages on R1 and R2 are equal; owing to
this, we can find the voltage V2 on R2. In order to find
the voltage on R3, we need its current, which goes also
through R2 and can be found as V2/R2.

41. Apply the idea 1 for the two cases (7 lamps and 8 lamps).
42. Solution is completely analogous to 35.
43. Apply the idea 9: it is not good to combine A1, A2 and

A3 into a Y , because we loose information supplied by the
problem conditions (currents I1 and I2 would be merged
into a single wire of the equivalent Y -connection). There-
fore, we substitute A2, A3 and A4 with a ∆-connection
(with each resistor having a resistance of 3r). We know the
sum of currents I2 in the two wires of the ∆-connection,
and we can find the current through that 3r-resistor which
is parallel to A1 as I1/3 (see idea 1). Hence we can de-
termine all the currents (knowing the currents, it is easy
to find also R/r). Alternatively, the problem can be solved
by making use of the idea 13.

44. For the first polarity, the leftmost diode short-circuits all
the other resistors, except for the two at the left upper
corner of the circuit. For the reversed polarity, the left-
most diode is closed (can be “cut” off), and the next diode

short-circuits five resistors which remain rightwards from
it.

45. Apply the solving technique of problem 20.

46. Apply the solving technique of problem 20.

47. Apply ideas 22 and 23 (use a negative resistor between
B and C); calculate all the pair-wise resistances (A − B,
A−C,and B −C) for the symmetric lattice; apply idea 9
to “cut off” the wire between B and C.

48. Apply the solving technique of problem 21.

49. Consider this decagon (with few missing sides) as the deca-
gon of the problem 48, which has additionally negative
resistances −R connected parallel between the sides AB
and BC (idea 23). Further, apply the generalized idea 9:
represent the decagon of the problem 48 as a Y -connection
of 10 identical resistors. Finally, calculate the resistance
using the idea 1.

50. (I) leave the wires as shown below by red, blue and green
lines; (II) short-circuit the nodes as shown by black lines
below.

For a precise calculation, consider this side-less octagon as
the octagon of the problem 48, which has additionally neg-
ative resistances −R connected parallel to the sides (idea
23). Further, apply the generalized idea 9: represent the
octagon of the problem 48 as a Y -connection of 8 identical
resistors. Finally, calculate the resistance using the idea
1.

51. Note that removing the first cell of this infinite chain will
increase its resistance exactly two times; use this fact to
apply the idea 18.

52. Use the same approach as for problem 17.

53. Apply the idea 27: short-circuit (and later, cut off) all
these wires which are not known to be intact; the ideas 20,
21, and 5 will be also useful.

54. Notice that a wheel graph is self-dual, so all we need to
do is to use the idea 17. More specifically, assume that
in the case of one of the spokes, there is additionally a
battery connected in series to the resistor r. In the dual
circuit, spokes become rim segments (of “resistance” 1/r)
and vice versa. So, the circuit is almost self-dual (with
resistance-to-“resistance” ratio of Rr, just the “battery”
is now on a rim segment (and not on a spoke as the ori-
ginal battery). There is also an alternative solution which
exploits the result of the generalized problem 55.

55. First, we need to write down expression for the resistance
between i-th node and j-th node if there is a direct con-
nection between these two, and this can be done easily:
Rij = (φ(ij)

i − φ
(ij)
j )/I, where φ(ij)

k denotes the potential
of the k-th node when a current I is driven into the i-th
node, and driven out from the j-th node. Our plan is to
add up all the equations, and because of that, we don’t
want to have in our expression “if”-conditions, because it
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is difficult to expect that such expressions will cancel out
when a sum is taken. The solution here is to multiply
this expression by the conductance σij of a direct connec-
tion between the two nodes: if there is a direct connection,
σij = 1/R, and the result will be Rij/R. If there is no
direct connection, the result will be zero, and hence, there
will be no contribution to the sum. The second issue is
that if we keep using the potentials φ(ij)

k , nothing will can-
cel out upon taking a sum: for each resistance Rij , we
introduce a new distribution of potentials (as indicated by
the upper indices). We clearly need to reduce the num-
ber of potential distributions. Luckily, this can be done
by using the superposition principle (similarly to the idea
22): we introduce a reference node, let it have index i = 1;
we consider n− 1 potential distributions φ(k)

j (2 ≤ k ≤ n)
when a current I is driven into the i-th node, and out of
the 1st node. Then, φ(ij)

k = φ
(i)
k −φ

(j)
k . What is left to do,

is to take a sum
∑

i,j Rij ; note that the summation order
can be chosen as needed, either

∑
i

∑
j Rij or

∑
j

∑
j Rij ;

don’t forget that with this sum, each node pair is counted
twice.

56. According to the idea 31, perturbation current Ĩ is de-
scribed by a circuit which we obtain if we substitute the
diode with a resistance Rdiff and remove the electromotive
force. For this equivalent circuit, use the fact 17.

58. Repeat the solution of pr 57 while using the ideas 32, 33,
and 32 (which means that the energy loss at the diode
equals to Vd∆q, where ∆q is the charge change).

59. Use idea 32 to obtain an equation for the final voltage;
apply also ideas 33, and 32, and notice that at the initial
and final states, there is no current, hence no energy of
the inductor.

61. Initially, all the capacitors are charged to the voltage 1
3 E ,

i.e. q = 1
3CE . The total charge of the system “right plate

of the 1st + left plate of the 2nd capacitor + right plate of
the 3rd capacitor” (the system A) is conserved; at the final
state, when there is no current through the resistor, the
system A will be equipotential, and the applies to the sys-
tem B (consisting of all the other capacitor plates), hence
all the plates of the system A will have the same charge.

62. Part (a): apply ideas 32 and 35: for dI
dt = 0, there is no

voltage of L, and hence no voltage on C2, and hence a
voltage E on C1.
Part (b): use the same approach by noting that when
there is an extremal voltage on C1, there is also an ex-
tremal voltage on C2 (as the sum of these voltages gives a
constant E). Hence, there is no current through the wires
leading to C1, and there is no current through the wires
leading to C2; from the Kirchoff’s current law, there is also
no current through L.

63. Apply idea 36: find the voltage on C1 for the stationary
state of the system (constant I implies no voltage on L,
hence full E on C1). Next, short-circuit E (C1 and C2 be-
come parallel), and find the free voltage oscillations on C1
in the form V = V0 cos(ωt+φ) (what is ω?) and determine
V0 and φ from the initial condition (i.e. initial values of V
and dV

dt ).

64. During the first half-period when K is closed, the diode
receives the reverse voltage of the battery and, hence, is
closed; according to the idea 37, the current through the
diode grows linearly according to the applied voltage 5 V.
At the beginning of the second half-period, when the key
is opened, this current will be re-directed through the di-
ode; the diode will open since this is a forward current.
Now, the inductor will receive voltage −7 V, which corres-
ponds to a linear decrease of the current. Once the current
reaches 0 A, the diode will close again (a reverse voltage of
−7 V will be applied to it). The average charging current is
found as the charge through the battery (the surface area
under the I(t)-graph for the second half-period), divided
by the period.

65. (a) Initially, there was no charge nor current in the system;
hence, immediately after the key is closed, there is still no
current in L, according to the idea 38, we “cut” it off, and
there is still no charge nor voltage on the capacitor, hence
we short-circuit it; for such a simplified circuit, we can
easily calculate the ammeter current.
(b) Once a new equilibrium is achieved, according to the
idea 38, we “cut off” the capacitor, and short-circuit the
inductance.
(c) For the final part, the inductor will retain the current
of part (b), hence we substitute with the respective ideal
current source; the capacitor will retain the voltage of the
part (b), hence we substitute it with the respective ideal
battery. The circuit is further simplified by using the idea
6.

66. (a) During each half-period, the capacitor will reach very
fast (as compared with the period length) a stationary
state: constant charge on the capacitor means no current,
so that all the current flows through the resistor.
(b) According to the idea 38, capacitor remains essentially
short-circuited, so that almost all the current goes to the
capacitor plates (and nothing goes to the resistor). Hence,
the charge q on the capacitor can be found using the idea
39; V = q/C.
(c) Use the graph from part (a); keep in mind that the
amplitude of oscillations is half of the difference between
the minimal and maximal values.
(d) There are still the same saw-tooth oscillations as in
part (b), but the value V0 around which the voltage oscil-
lates changes slowly, until a completely periodic behaviour
is reached; the stationary value of V0 can be found by ap-
plying the idea 40. the mean current

67. Characteristic time L/R is much larger than the period:
the current in the inductor will remain almost constant
during a period. Suppose the AC input voltage is switched
on; first, there is no current in inductor, it is as if “cut off”.
The diode is opened during a half-period: then, the diode
works as a resistance-less wire, and the inductor’s voltage
equals to the input voltage; during the other half-period,
the diode is closed, “cutting off” the right-hand-part of the
circuit: since there is no current in the inductor, there is
also no current in the resistor, and hence, no voltage on the
inductor. This means that when averaged over the entire
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period, there is a positive voltage on the inductor: the in-
ductor current starts slowly increasing. Constant inductor
current means that the diode will remain open for a longer
time than a half-period. Now, in order to apply the idea
40, sketch a graph for the inductor voltage as a function
of time, and try to figure out, under which condition the
average inductor voltage will become equal to zero.

68. Notice that the external magnetic field changes from
−NBS to +NBS (or vice versa), and that the self-induced
flux is 0 both at the beginning and at the end (although
takes non-zero values in between); apply the idea 41.

69. (a) Notice that if r = 0, there is a superconducting loop
containing L and r, which means that I2 = Const); use
the Kirchoff’s current law to obtain I1 for t < t3; notice
that for t = t3, I1 = 0, so that even for t > t3, there is no
voltage on r, hence I2 = Const.
(b) At the moment t = 1 min, the characteristic time of
the circuit containing L will drop from infinity to a new
value (use the idea 36 to find it); analyse now the prob-
lem using the idea 38 (the system will relax to the new
equilibrium state with the above mentioned characteristic
time).
(c) There are three stages: first, reduce the current in r

(by increasing the total current) so that it falls below 0.5 A;
second, switch it to a normal conduction state and while
keeping I1 small, reduce I2 by reducing the total current
I2 (in order to keep I1 small, I1 = LdI1

dt r
−1
n needs to be

small, i.e. the process needs to be slow); third, switch r

back to superconducting state.
(d) First step is the same as for (c), second step is to in-
crease the total current further (from 20 Ato30 A) while
r = rn, third step is to make r = 0 and to decrease the
total current back to zero.

70. (a) Use the idea 43-i: the magnetic flux L(I1 + I2) in the
ferromagnetic core (cf. fact 20) does not change instant-
aneously, and immediately before switching, the flux was
zero (this gives us our first equation). Following the idea
43-ii, the inductive electromotive forces can be eliminated
from the Kirchoff’s voltage laws (written for the two loops),
giving us a second equation.
(b) We just need to apply the idea 43-ii. More specifically,
the Kirchoff’s voltage laws for the two loops serve us as
a system of differential equations for the two currents I1
and I2; if we multiply one equation by r, another one by R,
and add the two equations, we end up in a single equation
for I = I1 + I2; the solution of that equation can be found
using the fact 17 and idea 36.

71. Apply the idea 38: immediately after the key is closed,
all the inductor currents are the same as before, which
you can find from the Kirchoff’s current law; knowing the
inductor currents, you can also find the currents in the
lamps.

72. Notice that L1 is short-circuited, hence its voltage is zero
and its current is constant; keep this in mind while using
the idea 32 to find heat; for finding the charge, consider
the Kirhoff’s voltage law for the loop involving the upper
wire and inductance L2, use the idea 41.

73. (a) Apply the idea 38: during each half-period, a new equi-
librium will be reached, and the dissipated energy can be
found using the idea 32.
(b) Apply the idea 39: the capacitor’s voltage VC remains
essentially constant, hence the resistor’s voltage will be
V2 − VC , or V1 − VC , depending on the half-period. Upon
long-term evolution, the average current through the ca-
pacitor will be equal to 0, hence VC = 1

2 (V1 + V2).
74. According to the idea 36, short-circuit the battery, upon

which the parallel/series connection of the three resistors
can be substituted by a single equivalent resistor.

75. To begin with, notice that RC needs to be large, so that
the capacitor will keep almost a constant voltage during
each period (otherwise there would be large current fluctu-
ations). Next, the capacitor’s voltage will be equal to the
maximal voltage of the sinusoidal input voltage (the diode
is opened once during each period, when the input voltage
is maximal). Now, the resistance R can be found by com-
bining the Kirchoff’s voltage law (to obtain the resistor’s
voltage), and the Ohm’s law. During each period when the
diode is closed, the capacitor’s voltage will decrease by the
amount ∆V corresponding to the charge ∆Q which flew
through the light emitting diodes. On the other hand, the
allowed voltage variations can be expressed in terms of the
allowed current variations by using the Ohm’s law.

76. (a) Apply the ideas 38 (cut off the capacitors) and 6 (cut
off the voltmeter).
(b) Use the same approach as in part (a): substitute capa-
citors with batteries and inductors — with current sources.
(c) Apply energy conservation law (notice that the circuit
breaks down into two independent circuits, so that the
power dissipation can be calculated separately for each of
the circuits).

77. (a) Use the fact 5: P (t) = V · I(t) , where V is the diode
voltage, which is constant and can be brought before the
braces (i.e. the averaging sign), ⟨P ⟩ = V ⟨I⟩; apply the
idea 40 (together with the Kirchoff’s current law) to con-
clude that the average current through the diode equals to
the current through the load.
(b) Proceed in the same way as in Problem 75; do not
forget the diode opening voltage 1 V, which needs to be
subtracted from the AC voltage amplitude to obtain the
maximal voltage of the capacitor.
(c) Proceed in the same way as in Problem 75.
(d) Apply the idea 29 to the first period when the capacitor
is charged from zero volts up to the full working voltage.

78. (a) This problem is very similar to Pr 64: the inductor re-
ceives a constant voltage Ui when the key is closed, U0−Ui

when the key is opened and there is a forward current
through the diode, and 0 V when the key is opened and
there is no current. This corresponds respectively to a lin-
early increasing, to linearly decreasing, or to a constantly
zero input current. Output current can be found from the
Kirchoff’s current law.
(b) See the hints of Pr 64.
(c) Apply the ideas 38, 40, and Kirchoff’s current law to
conclude the resistor current equals to the average output
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current from part (b); then apply the Ohm’s law.

79. (a) Consider separately two cases: SG is open, we have a
simple RC-circuit with a battery; SG is closed, essentially
short-circuiting the capacitor and almost immediately dis-
charging it.
(b) During the charging cycle, the capacitor current needs
to remain almost constant; this current is defined by the
voltage falling onto the resistor throughout the cycle.
(c) Charging current times T gives the break-down charge
of the capacitor; equate this to the value defined by the
break-down voltage and C.
(d) Look at your expression for T .
(e) Notice that amplitude equals to V0/2. (f) Notice that
the required waveform can be obtained from the waveform
Vb(t) from the question (b) as V0 −Vb(t); construct circuit
which gives such an output.

80. (a) Apply fact 19; if V = V0 cos(ωt), current can be ex-
pressed as I = dq

dt , where q = V C.
(b) Apply the ideas 29 and 36: consider separately the
cases of forward and reverse currents; in both cases, there
is a sinusoidal signal with a shifted symmetry axis.
(c) The system will stop if there is no current, i.e. when
−Vd < V < Vd.
(d) Use your graph for question (b) to find the corres-
ponding change of the capacitor’s voltage ∆V (of course,
∆q = C∆V ).
(e) If q corresponds to the coordinate x of a spring-mass
oscillator then to which physical quantity X will corres-
pond a voltage applied to an inductor? If the current is
positive then what can be said about the mechanical sys-
tem? Zener diode provides a constant voltage if current is
positive; what type of X would have an equivalent prop-
erty?

81. (a) During the linear growth of B (from 0 ms to 10 ms),
the coil serves as an ideal battery of emf. NS dB

dt . Estim-
ate the characteristic times for two current loops: first
involving the coil and C, and second, involving the coil
and L; compare this with the time-scale of 10 ms. Apply
the idea 38.
(b) Now, the coil operates essentially as a wire (as its in-
ductance is negligible); the current in R1 is defined by the
voltage obtained by the capacitor during the first 10 ms,
and the current in R2 is defined by the current induced in
the inductor during the first 10 ms.
(c) apply the idea 41 for the current loop consisting of the
coil, L, and R2.

82. (a) According to the idea 31, perturbation current Ĩ is de-
scribed by a circuit which we obtain if we substitute the
diode with a resistance Rdiff and remove the electromot-
ive force. Further we apply idea 48; for instance, we can
“cut” the circuit near the battery and equate the imped-
ance of the resulting circuit segment to zero, Z(γ) = 0
with γ = −iω. According to the idea 31, the system is
stable if all the solutions are stable, so all the roots for γ
must have a non-negative real part.
(b) For very fast perturbations, the impedance of the in-
ductance L can be considered infinitely large, hence no

current can enter the inductor L and resistor R: this part
of the circuit can be “cut off”. Similarly, for such fast
processes, the impedance of the capacitor C is negligibly
small, so it can be short-circuited in the equivalent circuit.
Otherwise, the analysis repeats the steps of task (a).

83. (a) resistances are found straightforwardly as the cotan-
gents of the line segment slopes;
(b) use the idea 24 and determine the number of solutions
as the number of intersection points between the I − U -
curve and the straight line describing the Kirchoff’s voltage
law;
(c) apply the ideas 31 and 26 (cf. problem 56);
(d) apply the idea 29 together with the fact 9: notice that
as long as the thyristor operates at the lower branch of
the V-I-curve, there will be always a positive capacitor
current charging it, and as long as the thyristor operates
at the upper branch, there is a is negative capacitor cur-
rent discharging it;
(e) apply the idea 29 together with the facts 12 and 13;
(f) since were are asked about an estimate only, there are
many methods what can be applied, e.g. calculating the
minimal and maximal instantaneous dissipation power val-
ues based on the cycle drawn for task (d) and approxim-
ating the average power with the average of the minimal
and maximal values;
(g) with battery voltage E ′, there is a stationary state for
the system at the lower branch of the V −I-curve, but not
at the upper branch; if the battery voltage is increased, the
stationary state disappears and the system starts evolving
as described for task (f); the behavour depends how fast
we switch the voltage back: was there enough time for the
system to jump over to the upper branch or not [for more
detailed analysis, use the same methods as in the case of
the task (d)];
(h) write down the qualitative criterion found for task (g)
using the facts 12 and 13.

84. (a) Write down the Kirchoff’s current law for the loop con-
taining L and E and keep in minde idea 37;
(b) when K1 opens, the current flows in loop L-R: study
the behaviour of current in time, keep in mind the idea 17
and pay attention to the fact that L/R ≪ τK ≪ τL;
(c) recall the intermediate result of the previous question
— how behaves I(t) on the inductor;
(d) use the idea 29; charge can be found by either using
the idea 41, or direct integration of the I(t)-dependance
(cf. fact 18);
(e) apply the idea 32: compare the energy released by the
inductor and the heat dissipation by keeping in mind that
in average, the capacitor’s energy remains constant;
(f) study, how large charge is lost on capacitor when the
diode is closed: keep in mind the idea 39.

85. (a) Apply the idea 43-i: the fluxes of parallel currents add
up destructively, hence, at the first moment, the fluxes in
the two coils must be equal and parallel; keep in mind that
the total flux in both coils are equal, hence their voltages
are also equal.
(b) Follow the idea 43-ii: write down Kirchoff’s voltage
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laws, eliminate current derivatives, express one current
through the other and substitute this expression back to
one of the Kirchoff’s equations, solve this differential equa-
tion for the initial conditions found in task (a), cf. fact
17.
(c) Note that a current flowing along the loop defined by
the two coils does not cause any flux, hence it can be
switched on instantaneously without causing any voltage
on the inductors.

86. Apply ideas 44 and 45: calculate the ohmic resistance
R of the gun from the nominal values, express the new
power dissipation as P1 = |I1|2R, where I1 = V/Z, with
Z = R+ 1/iωC.

87. (a) calculate the ohmic resistance of the lamp as U ′/I, and
apply the idea 44 (express the total impedance containing
L as an unknown, and take the modulus from the Ohm’s
law, written for the entire circuit, to obtain equation for
finding L).
(b) Apply idea 44 (the formula φ = argZ).
(c) Apply the idea 45 (keep in mind that we are dealing
with the rms amplitudes here).
(d) Apply the idea 38 (for a brief instance, the inductor
will act as a constant current source).
(e) Express the instantaneous power as a function of time
by substituting I = I0 cos(ωt) into the Joule’s law.
(f) Ignition is needed when the gas is insulating, i.e. when
there are almost no ions in the gas.
(g) Calculate the new power dissipation; does it change?
Compare the magnitudes of the active and reactive powers
of this device (see fact 22).

88. Notice that each of the halves of the coil have inductance
L
4 , and due to the fact 21, M = L

4 . (This can be under-
stood if we cut off the capacitor and consider a current
I through the inductor: let the inductance of one half be
L′ so that also M = L′; then each of the halves will have
voltage L′ dI

dt + M dI
dt = 2L′ dI

dt , i.e. the total voltage on
the full inductor would be 4L′ dI

dt .) Let us use clock-wise
current loops I1 and I2 in the both halves of the circuit;
then the voltage on a half of the inductor will depend
on I1 + I2 (use idea 46!) and voltage on the capacitor
— on I1 − I2; write down the two equations given by the
Kirchoff’s voltage law, first express both I1 −I2 and I1 +I2
in terms of V0, and from these expressions find I2.

90. (a) Apply the ideas 44 and 45. Note that for the frequen-
cies ν+ and ν−, you’ll have a fourth order equation with
breaks easily down into two quadratic equations, one of
which has roots ν+ and −ν−, and the other one — −ν+
and ν−. Indeed, both negative and positive frequencies
must be the solutions, because they provide physically the
same signal, cos(ωt) = cos(−ωt), and each of these quad-
ratic equations have roots which are clearly different by
modulus. Because of that, the difference ν+ − ν− is ac-
tually the sum of the two roots of a quadratic equation,
which can be found using the Vieta’s formula.
(b) Apply the idea 47 to conclude that there is only one
non-zero natural frequency, and the idea 48 to find it
(equate the impedance between the left- and right-hand-

sides of the circuit to infinity).
(c,d) Note that there is a zero-frequency-mode: a constant
current can circulate in the loop formed by the two induct-
ors. The total current is the sum of such a constant cur-
rent, and a sinusoidally oscillating current; use the initial
conditions (the values of i01, i02, and U0), together with
the Kirchoff’s current law, and the fact that the ratio of
capacitor currents equals to the ratio of the capacitances,
to find the respective amplitudes.

91. Study the behaviour of the impedance of the black box
as a function of frequency, and pay attention to the low-
frequency asymptotics, to the high-frequency asymptotics,
and to the minimum of the modulus of the impedance.

92. (a) Apply the idea 44, together with either the method
of loop currents, or node potentials; keep in mind that
each next node has potentials and currents phase-shifted
by φ, for instance, ϕj+1 = ϕjeiφ, where ϕj is the poten-
tial of the j-th node (we assume that the lower wire has
a zero-potential); once you eliminate potentials (or cur-
rents) from your system of equations, you should obtain
an equation relating ω to φ .
(b) Keep in mind that the phase speed of a wave is
vp = ω/k, and the phase shift is related to the wave vector
via equality φ = kl.
(c) Study the low-frequency limit of your result for part
(b).
(d) Use the idea 51 to compare two systems: an infinite
chain of springs and masses, and the given circuit; now it is
more convenient to work with the loop currents, and write
differential equations for charges passing through induct-
ors. This is because for the mechanical system, the second
derivative of each coordinate enters only into one of the dif-
ferential equations (the Newton’s II law); meanwhile, when
using the node potential method and capacitors’ charges,
the inductors’ currents (terms giving rise to second deriv-
atives) are expressed from the Kirchoff’s current law and
would involve the charges of all the capacitors).

93. Apply the idea 52. More specifically, notice that the four
vectors form a quadrilateral, opposing angles A and B of
which are right angles, hence this is an inscribed quadri-
lateral, and the other diagonal (other than AB) is the dia-
meter. Pay attention to the fact that the quadrilateral is
not convex, because the direction of the voltage vector on
L is obtained from that of R1 by a 90◦-counter-clockwise
rotation (multiplication by iLω/R1), and the direction of
the voltage vector on R2 is obtained from that of C by
the same rotation (multiplication by iCωR2. The prob-
lem simplifies further owing to the fact that two sides and
one diagonal of the inscribed quadrilateral are all equal to
each other.

94. Apply the idea 44, together with the idea 6: the circuit
breaks down into parallel and series connections. Express
the voltage on the voltmeter and equate it to zero; pay at-
tention to the fact that a complex number is zero if both
real and imaginary parts are zeros, i.e. one equation for
complex numbers gives actually two equations for the real-
valued quantities.
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95. You can solve it either by straightforward calculations by
applying idea 44, or geometrically (idea 52).

96. Knowing P2, U2, and U0, one can easily find the resistance
of the power lines Rl. Further there are two options. First,
one can proceed via a brute-force approach and using the
idea 44: with the known voltage at the power station U0,
the values U1 and P1 yield two equations for finding two
unknowns, r and L.
Another and mathematically easier way is to use the idea
52: apply the cosine theorem to express the known voltage
at the power station via the voltage on the power lines
Ul = IRl, and the voltage on the transformer. This equa-
tion can be solved directly with respect to Pl = I2Rl once
you notice that the term with cosine can be written as
2PRl and hence, is already known.

97. Proceed similarly to the problem 93 (though, the quadrilat-
eral is not inscribed): show that the diagonal AE divides
the quadrilateral of voltages into two equilateral triangles.
More specifically, notice that lower and upper branches of
the circuit have identical impedances and hence, there is
no phase shift between the currents in them; because of
that, the voltage vector on AB is equal (hence also paral-
lel) to the one on DE; the same applies to the voltages on
BE and AD. Therefore, the triangle formed by voltage
vectors on AB, BE, and AE is equilateral; the same ap-
plies to the remaining triplet of voltages.

98. Apply the idea 52. Show that similarly to the problem 97,
the voltage vectors form two equilateral triangles. More
specifically, use the symmetry to show that the voltage
vectors on the two capacitors are equal to each other, and
the voltage vectors on the two inductors are equal to each
other. Details of exploiting the symmetry are as follows.
Rotate the circuit by 180◦, upon which the capacitors (and
inductors) are swapped, and the applied voltage becomes
negative; further, rotate the input voltage vector by 180◦:
the new and old circuits become identical, hence, all the
corresponding voltages are equal. In particular, if origin-
ally, the left capacitor had voltage U⃗C1 (from the input
lead towards the resistor), the originally right capacitor
has now also voltage U⃗C1, i.e. before the input voltage re-
versal, it had voltage −U⃗C1 (towards the resistor), which
means that originally, it had voltage U⃗C1, as measured
from the resistor to the input lead. Next, study the quad-
rilateral of the voltage vectors: its one diagonal gives the
input voltage, and the other one — the voltage on the res-
istor. While the current vector of the resistor is parallel
to the voltage vector, in the case of a capacitor it is ro-
tated by 90◦ clockwise, and in the case of an inductor —
by 90◦ counter-clockwise; use this observation when writ-
ing down the Kirchoff’s current law (for the node where
R, L, and C meet each other) to conclude that the cur-
rents in C, L, and R are all equal by modulus. Keep in
mind that while the difference of the current vectors of L
and C gives the resistor’s current, the sum of those gives
the input current. Finally, find the power dissipation and
the resistor’s resistance by using the resistor’s voltage and
current values.

99. Proceed according to the idea 48: “cut” the circuit near
one of the inductors and equate the impedance of the res-
ulting circuit to zero.

100. Apply the idea 44 to reduce the problem to a problem
of resistances, very similar to the problem 22. Similarly
to that problem, you need to apply the ideas 23 and 22.
Notice that the segment AE is also essentially broken, and
once AB and AE are broken, we can keep DA because if
the output leads are B and E, there is no current in the
segment DA (due to symmetry); breaking BA and AE

is the same as connecting respective negative resistances;
with these negative resistances, we can perform a node
splitting at A, so that a negative resistance is connected
only between B and E.

101. First, count the number of degrees of freedom (i.e. the
number of natural frequencies). Further, notice that there
is one loop current, which involves only inductors through
which a permanent current can circulate (this yields one
frequency). Next, apply the idea 50: two limit cases are
obtained: one circuit contains only L1 and C1 (use the
result of problem 99!), and the other — L2 and C2.

102. Use the idea 38: for (a), inductors can be “cut off”, and
the capacitors short-circuited; for (b) it is vice versa. For
(c), the impedance of the connection of inductors and ca-
pacitors needs to be inifinite (there is a voltage resonance),
and since there is no voltage on the resistor, it can be short-
circuited. For (d), the voltage on R needs to be maximal,
hence the modulus of the overall impedance — minimal;
this means that the impedance of the connection of induct-
ors and capacitors is zero (current resonance).

103. Keep in mind the idea 34. Find the maximal current
Ix when the switch is opened — either using the idea
35, or using the idea 36 with fact 19. When the switch
is closed, we have two independent LC-circuits with the
same frequency, so the current in the switch is found as the
difference between the two currents in these LC-circuits.
Amplitude (and hence, the maximal value) can be found
using phasor diagram, phase shift is to be found from the
initial charges on capacitors and initial currents in induct-
ors when the switch was closed.

104. (a) diac current can be neglected, hence R and C are con-
nected in series directly to the AC voltage source so that
we can apply the idea 44;
(b) we need to study, how will change the diac’s current
while the capacitor voltage grows, to that end we use the
idea 24 and fact 9: if we start with a small voltage, there is
only one solution for the current, but with a small enough
Rt, at a certain voltage two more solutions appear, and at
an even larger voltage (around Ub), two smaller solutions
disappear; at that moment, the diac’s current is forced to
jump to the only remaining solution (now it becomes also
clear what does mean “diac starts conducting”); the con-
dition “triac starts immediately conducting” means that
the new diac’s current must be larger than It;
(c) according to (a), the capacitor voltage lags behind the
overall voltage and hence, behind the lamp’s current; when
the lamp’s current goes through zero (at t = 0 on the
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graph) and triac closes, the capacitor’s and diac’s voltage
is still negative; the triac will open again when the capa-
citor’s voltage becomes positive and equal to Ub at t = t1;
(d) the energy disspated on the lamp is calculated as∫
R−1[Ul(t)]2dt.

105. Notice that the circuit is self-dual. Calculate the imped-
ance for sinusoidal voltage input using the idea 15. Since
the impedance is independent of the sinusoidal circular fre-
quency ω, it is equivalent to an active resistor. NB! The
analysis would have been much more difficult if the overall
impedance were to depend on ω as the impedances cannot
be applied directly in the case of non-sinusoidal signals.

106. The number of degrees of freedom is two, so is the num-
ber of natural oscillation modes. According to the ideas
48 and 49, consider voltage resonance (ZAB = ∞) for fic-
titious terminals at the symmetry axis (A — middle point
of the inductor L2 dividing it into two inductances, L2/2
each, and B — the middle point of the lower wire); the im-
pedance ZAB simplifies due to symmetry to such a degree
that the condition ZAB = ∞ gives us only one frequency.
According to the idea 49, the missing frequency is found by
short-circuiting nodes A and B, which makes C connected
to a parallel connection of L1 and L2/2.

107. According to the idea 52, consider phasor diagram; ac-
cording to the Thales’ theorem, the voltages (with respect
to the one of the input terminals) of the nodes A and B lie
on circle drawn around the input voltage vector as its diag-
onal; the voltage of the node D is the circle’s centre. Keep
in mind that due to the Thales’ theorem, the median of a
right triangle equals to half of its hypotenuse; don’t forget
that central angle is twice as large as the corresponding
inscribed angle.

108. Similarly to the problem 107, the voltages (with respect
to one of the input terminals) of the output nodes lie on
circle drawn around the input voltage vector as its diag-
onal; apply the inscribed angle theorem.

109. Proceed similarly to the problem 108; the only difference
is that the relevant voltages do not form right angles, but
angles ≥ π/2; correspondingly, the voltages of the out-
put terminals lie inside the circle. Note that the segment
which lies completely inside a circle cannot be longer than
the diameter, and can be equal in length to the diameter
if its endpoints lie on the circle.

110. Reversing the idea 48, we find these frequencies as the
natural frequencies of the circuit for which the termin-
als are short-circuited. We result in a symmetric circuit
which has two parallel connections of L and C, connec-
ted in series with 3C. We represent the capacitor 3C
as a series connection of two capacitances 6C, and use
the idea 49 together with the voltage reonance condition
(ZAB = ∞, where A and B are the symmetrical nodes of
the circuit) to deduce the first natural frequency. Finally,
we short-circuit nodes A and B to find the missing natural
frequency.

111. We start solving the same way as in the case of problem
110. Once we short-circuit the input terminals, we obtain

a symmetric circuit which has three linearly independent
loops, but there is one loop which consists of only capacit-
ors, so there are two natural oscillation modes. We apply
ideas 48 and 49 by splitting the circuit at the position of
one of the inductors and requiring Z = 0. Due to the sym-
metry of the obtained circuit we can remove the bridge
connection without affecting its impedance; the condition
Z = 0 yields us one frequency. The missing frequency is
obtained as the natural frequency of the simplified circuit:
the circuit where the “cut” point is left disconnected.

Answers
1. R ≈ 14 Ω
2. I = 0.5 A
3. R = 0.5 Ω
4. R = 2.5 Ω
5. I = 3

22 A
6. I = 196 µA
7. VΣ = 78 V
8. I = 21

19 A
9. I4 = 3 A, I3 = 2 A
10. P = 1

4
R2

(r+R1+R2)(R1+r) E2

11. r = (
∑n

i=1 r
−1
i )−1, E = r

∑n
i=1 Eir

−1
i

12. I2 = I4 = 0, I1 = I3 = E/R
15. R = 2Ω
16. R = R1

2

(
1 +

√
1 + 4R2/R1

)
17. r′ = R

2

(
1 +

√
1 + 4R/r

)
, E ′ = E

18. R = 5
6 Ω

19. RAO = 9
20R.

21. r = 19
30R

22. r = 19
11R

23. Straight lines connecting the following points: (0 s, 0 A);
(1.5 s, 1 A); (1.5 s, 0.6 A); (5 s, 2 A); (5 s, 5

3 A); (10 s, 10
3 A);

(17 s, 1 A); (17 s, 1.2 A); (18.75 s, 0.5 A); (18.75 s, 5
6 A);

(20 s, 0 A)
24. I ≈ 8 mA
25. approximately −1.4 times
27. 2

29R ≈ 0.414R < r < 4
9R ≈ 0.444R.

28. increases 16
9 times

29. 0.75 mW, 0 W, 0 W.
30. r′ = R 3R+2r

5R+3r , E ′ = E R
5R+3r , Pmax = E2R

4(5R+3r)(3R+2r)

31. I ≈ 3 mA
32. I1 = 1.5 A; I2 = 1.7 A
33. R = 40 kΩ
34. I ∝ V 0.6 or equivalently V ∝ I5/3

35. I1 = 0, I2 = 3E/R, I3 = I4 = 1.5E/R
36. 4 A
37. all ammeters: 0.75 A.
38. V2 ≈ 8.65 V
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39. V = (E1R2 − E2R1)/(R1 +R2 + R1R2
R3

)

40. V3 = 1 V

41. increases ≈ 1.14 times

42. 3 mA, 6 mA, 7 mA, and 14 mA.

43. R/r = 9

44. I1 = 0.7I0

45. RAB = R/3

46. r = R

47. r = 3
8R

48. r = 2R/n

49. r = 67
315R

50. R
3 < r < 5R

11 ; r = 6
17R

51. r = R 1
4 (3 +

√
17)

52. E ′ = E
(
1 + r

r′

)
with r′ = R

2

(
1 +

√
1 + 4 R

r

)
53. 40

87R ≤ r ≤ 47
87R

54. R(1 − R2
r )

56. R+Rdiff > 0

58. 1
2 (V0 − Vd)2C

59. 2(E − Vd)

61. 2
27CE2

62. C1E/
√
L(C1 + C2), E

(
1 + C1

C1+C2

)
63. Sinusoid with minima at V = E C1

C1+C2
and maxima at

V = Vmax; ω = 1/
√

(C1 + C2)L

64. 8.9 mA

65. 0 mA, 0 mA, and 0 mA

66. V = IR for the first half-period, and V = −IR for the
second half-period [more precisely, for each half-period,
the asymptotic values are reached exponentially, V =
±I1R(1 − 2e−∆t/RC), where ∆t is the time elapsed since
the beginning of the half-period]; saw-tooth profile which
grows linearly from 0 to I1T/C, and decreases linearly
down to 0 during the second half-period; (I2 + I1)R/2,
(I2 − I1)R/2; (I2 + I1)R/2, (I2 − I1)T/8C

67. IR = V0 cos(2πνt)/R, ID = V0[cos(2πνt) + 1]/R
(if we don’t use approximation Lω ≫ R then ID =
V0
√
R−2 + (2πνL)−2[cos(2πνt+ φ) + 1]).

68. 2BNS/R

69. See at the website of IPhO

70. (a) Both by modulus E/(R+ r);
(b) E

R+r e−t/τ and E
R (1 − r

R+r )e−t/τ .

71. 2I, I, and I

72. 1
2L2

E2

r2 ; L2E
rR

73. P = (U2 − U1)2/4R, and P = C(U2 − U1)2/T

74. τ =
(
R1 + R2R3

R2 +R3

)
C.

75. 8.06 kΩ, > 50 µF

76. E ; −2E ; LE2/(2R2), CE2/2 + LE2/(2R2).

77. P = 2 mW; U0 = 21 V; C ≥ 200 µF; P1 = 200 mW

78.

J = τc

4L
U2

i

U0−Ui
; U0 = max

[
2Ui,

Ui

2

(
1 +

√
1 + τcR

L

)]
79. sawtooth profile consisting of curve segments V0 = Vi(1 −

e−t/RC) (from V0 = 0 till V0 = Vf ) and vertical line seg-
ments (from V0 = Vf till V0 = 0); Vi ≫ Vf ; T = VfRC/Vi;
R; both; for instance: use tha same circuit, but connect
another battery of emf. Vi − Vf and opposed polarity to
the node between the battery and the resistance, and take
output signal between the ‘−’-lead of the new battery, and
the top lead of the SG (many other solutions are possible).

80.

−CVd < q < CVd; ∆q = −4CVd, t = Nπ
√
LC, N =⌊

|q0|−CVd

2CVd

⌋
; a mass-spring system where the mass is sub-

ject to a dry friction force.

81. I1 ≈ 0.33 A, I2 = 5 mA; I ′
1 ≈ 5.6 mA, I ′

2 = Uτ/L =
10 mA; ∆q = LI ′

2/R2 = 3.3 mC.

82. (a) r +Rdiff < 0 and L
C < R|Rdiff| + r|R+Rdiff|;

(b) additionally, Ld < r|Rdiff|Cd

83. (a) Roff = 10 Ω, Ron = 1 Ω, Rint = 2 Ω, I0 = 6 A; (b) 3 Ω:
always one state; 1 Ω: 1, 2 or 3 states; (c) 3 A, 6 V, stable;
(d) from 4 V to 10 V moves along the lower branch, jumps
from 1 A to 10 A, returns down to 4 V along the upper
branch, and completes the cycle by jumping down to 0.4 A;
(e) 2.41 µs, 3.71 µs, 6.12 µs; (f) P ∼ 20 W; (g) τ < τcrit:
relaxation towards a higher stationary current, followed
by a relaxation towards the original stationary current;
τ > τcrit: relaxation towards a higher stationary current
along the lower branch, followed by a jump to the upper
branch, current decrease along the upper branch, jump
to the lower branch, and relaxation towards the original
stationary state; (h) 0.936 µs.

84. a) τL = LI0/E ; b) Vmax = RI0; c) P = V0E
R ; d) Vav =√

EI0R
2 ; e) U0 = I0L

2C

√
I0

2RE .

85. (a) 2
5

E
R and 1

5
E
R ; (b) 2

5
E
R e−t/τ , τ = 5L

R ; (c) constant, equal
to E/R

86. 2.8 µF
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87. 1.09 H; 64.1◦ 59.9 W; to create huge voltage to ionize the
gas, graph ∝ 1+cos(2πνt) [or slightly raised: a+cos(2πνt)
with a > 1]; recombination time is large enough to keep
vapors in the plasma state; the current is almost the same
as before, the phase −63.6◦, this is to reduce the reactive
power if two lamps are in parallel

88. V0( 1
ωL + ωC

4 .

90. R
√
C/L; 1/

√
LC with L = L1L2

L1+L2
and C = C1+C2; 0.1 A;

0.2 A

91. C = 1/ω limω→0 |Z(ω)|, L = limω→∞ |Z(ω)|/ω, R =
minω |Z(ω)|

92. φ = 2 arcsin
(

1
2ω

√
LC
)

; ωl/φ; φ ≪ 1 when v0 = l/
√
LC;

infinite chain of masses connected by springs

93. 20 V

94. L = R1R2C, R = R1R2/RC

95. 2 arctan(ωRC)

96. ≈ 300 W

97. 10
√

3V

98. 10 W, 30 Ω

99. ω =
√

5±1
2

√
LC

100. 11
18C

101. 0; 2√
L2C2

;
√

5±1
2

√
L1C1

102. 1, 0; 1, 0; 1, π, ν0 = 4π/
√

2LC;
√

1 + L
R2C , arctan L

R2C ,
ν1 = 2π/

√
LC

103. q0/
√

2LC.

104. (a) UC = U |k| = U/
√

1 + (2πfRC)2 and φ = arg k =
− arctan(2πfRC); (b) RtIt < Ub − Ud; (c) t0 =
[arcsin(Ub/UC) − φ]/(2πf); (d)

[
1 − 2ft0 + sin(4πft0)

2π

]−1
.

105. rectangular waveform of amplitude V0

√
C
L .

106. ω1 = 1/
√
L1C; ω2 =

√
2L1+L2
L1L2C .

107. V0/2; 2φ.

108. φ
109. V0; R1 = R2 = 0, R3 = L/Cr.

110. 1/
√
LC; 1/

√
7LC.

111.
√

2/3LC;
√

3/4LC.
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