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Problem 1. Asteroid (14 points)
Part A. Collision with Earth (5 points)

i. (2 pts) The longer axis of the asteroid 2a = Rmax + Rmin =

2Re equals to that of Earth, so the full energies, when reduced

to the unit mass, are equal. Immediately before the collision,

the Earth and the asteroid are at the same distance from the

Sun, so the gravitational potentials are equal, too. Hence, the

speeds are also equal. The distance between the Sun and the

asteroid equals to the longer semiaxis, hence it is situated at

the shorter semiaxis of the orbit. The velocity of the asteroid

is perpendicular to the shorter semiaxis, and the velocity of the

Earth — to the radius vector drawn from the Sun. So, the angle

between those two vectors is the angle between the radius vec-

tor and the shorter semiaxis, sin α = 1

2
(Rmax − Rmin)/Re = 1

2
,

hence α = 30◦. The relative velocity of the asteroid is the

vector difference of the two vectors, so its modulus equals to

va = 2v0 sin 15◦ ≈ 15.5 km/s. When accelerated further by the

Earth’s gravity field, the respective gravitational energy will be

added to the kinetic one, vb =
√

v2
a + 2gre = 19.1 km/s.

ii. (2 pts) At the limit case of impact, the trajectory of the

asteroid is tangent to the surface of the Earth. So, we can

apply the conservation of angular momentum for the point

where the trajectory touches the Earth, vab = vbre, hence

b = revb/va = 7900 km.

iii. (1 pt) Suppose that the asteroid is delayed by τ ; at that

moment when the asteroid is at the Earth’s orbit, the Earth

is at the distance l = v0τ from the asteroid. The relative ve-

locity of the asteroid forms with this displacement vector an

angle equal to 90◦ − 15◦ = 75◦, hence the impact parameter

b = v0τ sin 75◦, from where τ = b/v0 sin 75◦ ≈ 270 s. Since this

time delay is accumulated over 10 periods, the delay need for

a single period is τ/10 = 27 s.

Part B. Changing the solar pull (9 points)

i. (2 pts) When γ changes, the kinetic energy remains con-

stant:

− γ0
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γ0

0.5Re
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2a′
+

γ1

0.5Re

where a = Re and 2a′ = 0.5Re + R′

max. So,
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⇒ (1 − κ)Re = a′(1 − 4κ),

a′ = Re
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1 − 4κ
, R′

max =
Re

2

3

1 − 4κ
.

ii. (2 pts) At the limit of small κ, we can simplify the previous

result,
a′

Re
≈ 1 + 3κ.

From the Kepler’s third law, T/T0 = (a′/a)3/2
√

γ0/γ1, from

where ∆T
T0

≈ 3

2

a′
−a
a + κ

2
= 5κ. So, ∆T = 5T0κ.

iii. (4 pts) For photons, the energy-to-mass ratio is c. There-

fore, at the Sun’s surface, the momentum carried by photons

per unit time across a surface area S is given by dp/dt =

SσT 4
s /c. As the result of the coating, the photons are re-

flected back by the asteroid, instead of being absorbed. So,

before coating, each photon gave to the asteroid a momentum

equal to its own; no it will double. Hence, the change in the

force due to photons is given by ∆F = πr2
aσT 4

s /c (assuming

that the asteroid is at the Sun’s surface). Both the pressure

of photons and gravity force are inversely proportional to the

distance from the Sun, so the force due to photons can be, in-

deed, considered as a correction to the gravity constant. κ is

the relative change of that constant and can be calculated for

the Sun’s surface as

κ = ∆F/gSma = πr2
aσT 4

s /cgSma ≈ 2.8 × 10−8 .

iv. (1 pt) We need to have ∆T = 27 s, hence κ = 1

5

∆T
T0

≈
1.7 × 10−7 . This exceeds by an order of magnitude the effect

provided by the coating. κ provided by the coating is inversely

proportional to the diameter of the asteroid; the required κ is

inversely proportional to N . So, it would be possible to avert

collision for ra = 2 m, or for ra = 10 m with N = 60. In the

first case, the asteroid may not be large enough to warrant at-

tention; in the second case, 60 years is too long time. So, the

answer is “no”.

Problem 2. Thermodynamic cycle (5 points)

It is possible to realise the described process as a reversible

cycle between two reservoirs at T1 and T2 (in this case it is

called the Stirling cycle). A thermodynamic process is revers-

ible if and only if there is never any heat flux between re-

gions having non-infinitesimally different temperatures. Dur-

ing either isotherm we may keep the system in contact with

a reservoir. The isochores can be connected with a heat ex-

changer in such a way that the heat emitted at any specific

temperature on one isochore is later reused at the same tem-

perature on the other isochore. A corollary of Carnot’s theorem

(which says that the Carnot cycle is the most efficient one pos-

sible between to reservoirs) is that any reversible cycle between

two reservoirs has the same efficiency as Carnot’s. Assuming

T1 > T2, the efficiency is (T1 − T2)/T1.

Alternatively: for an isotherm, p ∝ T/V , therefore the work done

during compression from V1 to V2 is Q12(T ) =
∫ V2

V1

p dV ∝ T
∫ V2

V1

dV
V

=

T
∫ V2

V1

d ln V = T ln V2

V1
. During isochores there is no displacement and

thus no work done. The efficiency η =
Q12(T2)−Q12(T1)

Q12(T2)
= T2−T1

T2
.



Problem 3. Bars and rod (5 points)
With µ = 1

2
, the result-

ant force of the normal force

and friction force forms an angle

arctan 1

2
with the surface nor-

mal (assuming that the rod is as

short as possible and hence, at

the threshold of slipping). There

are three forces applied to the

rod — the gravity force mg ap-

plied to the centre of mass C, and

the two forces due to the bars.

At equilibrium, the three lines

s1, s2, and s3, defined by these

three forces need to intersect at

a single point Q (otherwise, with

respect to the intersection point of two lines, the torque of the

third force would cause a rotation of the rod). This configura-

tion is depicted in Figure.

Since the friction force forms angle arctan 1

2
with the sur-

face normal, hence ∠DP Q = ∠DRQ = arctan 2, hence AP =

RS = 1

4
d (see Figure). From the geometry of the blue tri-

angle, AS = 2
√

3d; due to AP = RS, P R = AS = 2
√

3d and

P D =
√

3d. Now, let us recall that tan∠DP Q = 2, hence

DQ = P R = 2
√

3d. From the geometry of the blue triangle,

∠DCQ = 30◦, so that DC = DQ/ tan 30◦ = 6d. Now we can

finally express

AC = CD + DP − P A = 5
3

4
d +

√
3d ⇒

L = 2AC = (11, 5 + 2
√

3)d ≈ 14.96d.

Problem 4. RLC-circuit (5 points)
i. (1 pt) In the stationary regime, the capacitors can be ef-

fectively disconnected (they conduct no direct current) and the

inductors can be substituted by wires. If the voltmeter is ideal,

there is therefore no current through R1 and the voltmeter

shows the voltage on R2 equalling E .

ii. (2 pts) Capacitors cannot immediately change their voltage

and inductors cannot instantaneously change their current. L1

and L2 had both been carrying all the current that had been

flowing through the circuit, hence, after opening the switch,

they still carry a current of E/R2 and act as such current

sources. As the current from L2 flows also through R2, the

voltage on R2 is E (with the “+”-side at the centre of the cir-

cuit). The current through L1 flows also through R1 (it is the

current charging C1); therefore the voltage on R1 is ER1/R2

(with the “+”-side at the centre). The reading of the voltmeter

has changed its sign and is E(1 − R1/R2) or, plugging in the

data, −2E .

iii. (2 pts) Immediately after opening the switch, capacitor

C1 was uncharged (it had been parallel to R1 that was carry-

ing no current) and C2 had a voltage of E (it had been dir-

ectly parallel to the battery). L1 and L2 were both carrying

a current of E/R2. The voltmeter can be effectively discon-

nected (its resistance is huge), giving us two separate circuits,

R1L1C1 and R2L2C2. Therefore (by the potential energy for-

mulae CU2/2 and LI2/2) the energy stored in the left-hand cir-

cuit was L1E2/(2R2
2) or, with the given data, LE2/(2R2). This

is the energy dissipated from R1. The corresponding expres-

sions for the right-hand circuit (giving the energy dissipated

from R2) are C2E2/2 + L2E2/(2R2
2) and CE2/2 + LE2/(2R2).

Problem 5. Diffraction grating (7 points)
The experiment is rather straightforward, except that the

grating pitch is smaller than the wavelength. Therefore, for a

perpendicularly falling laser beam, first main maximum cannot

be observed. In order to observe that maximum, the laser beam

needs to be inclined. The easiest way is to determine angle by

which the first main maximum is observed at the direction,

directly opposite to the laser beam. Then the optical path

difference between the rays originating from two neighbouring

stripes is found as ∆l = 2d sin α = λ, so that d = 1

2

λ
sin α , where

α is such an angle between the laser beam and grating sur-

face normal for which the first main maximum is observed at

the direction, directly opposite to the laser beam. sin α = a/c

can be calculated from geometrical measurements of the sides

a and c of a right triangle. For the uncertainty, ∆λ
λ = ∆a

a + ∆c
c .

Measurements yield d ≈ (320 ± 4)nm.

Problem 6. Uranium decay (7 points)
i. (2 pts) It can be seen from the table that the fist half-life

is much longer than all the others. This means that as soon

as something is produced by the decay of U238, all the other

decay steps in the chain take place almost immediately, and

for the other isotopes, a quasi-stationary concentration level is

achieved — such that the number of decays per unit time of

the isotope equals to that of U238. Let us apply this to U234.

If the number of U238 atoms is N238 then the number of de-

cays per unit time is dN
dt = N0 ln 2/τ238 = N234 ln 2/τ234, hence

N234/N238 = τ234/τ238 The total number of uranium atoms

equals to N = N238/0.993, so

N234

N
=

τ234

0, 993τ238

≈ 5.53 × 10−5 .

ii. (2 pts) Since the uranium ore has reached a quasi-

stationary composition of isotopes, per each decay of U238,

there is one decay event for each of the isotopes. So we need to

sum up all the decay energies in the second row of the table,

this gives us Edec = 52.1 MeV. Then the heat production rate

is given by w = NA
ρ
µ Edec

ln 2

τ238

≈ 2.0 W/m3.

iii. (3 pts) The heat released will escape owing to the thermal

conductance. Inside a sphere of radius r, the heat released

equals to 4

3
πwr3 = 4πr2κ dT

dr (the right-hand-side gives the

thermal flux due to conductance). From this equation we ob-

tain rdr = 3 κ
w dT , which yields after integration

R =

√

6
κ

w
(T0 − Ta) ≈ 305 m.

Problem 7. Lifting by current (7 points)
i. (2 pts) The Ampère force pulls the wires to the side so that

the wires will take a curved shape. Since the Ampère force is

perpendicular to the wire, the mechanical tension is constant

along the wires. Let the tension be T and the curvature of the

wire at a certain point — R. Let us consider a short piece of

the wire, of length a ≪ R. Then the angle by which the tan-

gent of the wire rotates while the tangent point moves over an

arc of length a is given by α = a/R. Let us study the force bal-

ance in the perpendicular direction for that piece of wire: the

Ampère’s force IaB is balanced by the tension T α = T a/R.

So, R = T/IB which means that R is constant, and the wire

will take the form of a circle segment. To conclude, both halves

of the wire will take the form of a circle segment, the convex

sides of which are turned outside.



ii. (2 pts) The maximal height is achieved when the circle

segments form a perfect circle, in which case the lifting height

is ∆h = l(1 − 2

π ).

iii. (2 pts) If the central angle of the circle segments is 2α,

the tangents to the wires at the point where the load is fixed

forms angle α with the vertical direction. So, the lifting force

is mg = 2T cos α. From the other hand, R = l/2α = T/IB, ie.

α
mg

lIB
= cos α,

which is the equation from where one can determine the angle

α. Then, the lifting height

∆h = l − 2R sin α = l − 2T

lIB
sin α = l

(

1 − sin α

α

)

.

iv. (1 pt) From the previous result it can be seen that we need

to have sin α
α = π

3
, hence α = π

6
and

I =
mgα

lB cos α
=

mgπ

3
√

3lB
.

Problem 8. Elastic collision (7 points)
i. (1 pt) The centre of mass moves with the velocity ~u =

M
M+m~v, and that will be the speed of the small ball in new

reference frame, hence its momentum ~p = −m~u = − Mm
M+m~v.

Since in this frame, the centre of mass is at rest, the large ball

needs to have equal by modulus and opposite momentum.

ii. (3 pts) Let the balls change a momentum ~q. The small

ball will have momentum ~p ′ = ~p + ~q, and as the centre of mass

remains at rest, the large ball will have momentum −~p ′. The

energy conservation law can be written now as follows:

~p 2

2m
+

~p 2

2M
=

~p ′2

2m
+

~p ′2

2M
⇒ |~p | = |~p ′|,

ie. the moduli of the momenta will remain unchanged.

iii. (3 pts) In the laboratory frame, the momentum of the

large ball will be

~p ′′ = M~u − ~p ′;

since |~p ′| remains constant, the angle α between ~p ′′ and ~u will

be maximal when ~p ′′ ⊥ ~p ′, with

α = arcsin
|~p ′|

|M~u| = arcsin
m

M
.

Problem 9. Power lines (7 points)
i. (2 pts) Let us use a frame where the moving perturbations

are at rest. There, the centripetal acceleration required for the

motion along a trajectory of curvature radius R is given by the

mechanical tension of the rope, for a small piece of rope (of

length l)

T
l

R
=

v2

R
σl ⇒ v =

√

T

σ
,

ie. k = 1.

ii. (2 pts) We consider the torque balance for one half of the

wire, with respect to the point where it is fixed to the pole.

Then, the centre of mass lays approximately at the distance L
4

(since the shape of the wire is not far from a straight line), and

the equation can be written as

T d =
L

4
σg

L

2
⇒ T =

L2σg

8d
.

iii. (3 pts) For the natural oscillation modes, there will be

standing waves with nodes at the fixing points; the lowest fre-

quency corresponds to the longest wavelength, which is 2L, so

that f0 = v/2L = 1

2L

√

T
σ .

Problem 10. Black box (8 points) We study what will

happen, if we connect pair-wise all the leads of the black box.

If we connect leads C and D, there will be permanently light

from the red lamp which sticks out from one of the small holes

of the box. This indicates that there is a light emitting diode or

a lamp connected in series with a battery between these leads.

If we connect leads A and C, there may or may not be light

from the same lamp. Once the light disappears, it will appear

again only after D and A have been connected for a short time,

or D and B for a longer time. In any case, the lamp light

vanishes during ca 10 seconds. This means that between these

leads, there is (a) either a diode and a capacitor in sequence (in

which case the capacitor needs to be charged for a light to ap-

pear), or (b) diode, capacitor, and a battery (in which case the

capacitor needs to be discharged for a light to appear). When

comparing with the previous paragraph, we see that segments

CA and CD need to have a common segment; CA includes a

capacitor, which is missing from CD. So, CD and DA need to

be connected in sequence. Thereby we exclude option (a).

If we connect leads A and D, there may or may not appear

a spark, indicating that there is only a capacitor between these

leads, or a capacitor and a battery. However, the battery is in

segment CD, so there is no battery in this segment.

If we connect leads D and B, there may or may not be green

light from another lamp. In any case, the lamp light vanishes

during ca 10 seconds. The light reappears after A and C have

been connected, and disappears after D and A have been con-

nected. This means that between these leads, there is either

a diode and a capacitor in sequence, or a diode, a capacitor,

and a battery. The capacitor is in segment DA, so DA needs

to be included in DB, ie. DA and AB need to be in sequence.

Since the battery is already in CD, there is no battery in this

segment.

If we connect leads C and B, nothing happens. If we com-

pare this with what we have learnt earlier — there are two

lamps or diodes, a capacitor and a battery between these leads,

we conclude that the light emitting components need to be di-

odes of opposite polarity.

If we connect leads A and B, nothing happens; comparing

with what has been found earlier we conclude that there is a

diode between these leads.

Finally, since the charge- and discharge time of the capa-

citor are relatively long (RC ≈ 5 s), except when discharging

via the A-D lead pair, the resistors need to be included into

the segments CD and AB.

Bringing everything together, the circuit needs to be as

given in Figure (or the same circuit with swapped polarities

of the diodes and the battery).


