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1 INTRODUCTION
For a majority of physics problems, solving can be reduced to
using a relatively small number of ideas (this also applies to
other disciplines, e.g. mathematics). In order to become good
at problem solving, one must learn these ideas. However, it is
not enough if you only know the ideas: you also need to learn
how to recognize which ideas are to be used for a given prob-
lem With experience it becomes clear that usually problems
actually contain hints about which ideas need to be used.

This text attempts to summarise the main ideas en-
countered in solving kinematics problems (though, some of
these ideas are more universal, and can be applied to some
problems of other fields of physics). For each idea, there are
one or several illustrative problems. First you should try to
solve the problems while keeping in mind those ideas which
are suggested for the given problem. If this turns out to be
too difficult, you can look at the hints — for each problem,
rather detailed hints are given in the respective section. It is
intentional that there are no full solutions: just reading the
solutions and agreeing to what is written is not the best way
of polishing your problem solving skills. However, there is a
section of answers — you can check if your results are correct.
There are also revision problems for which there are no sugges-
tions provided in the text: it is your task to figure out which
ideas can be used (there are still hints).

Problems are classified as being simple , normal , and
difficult (the problem numbers are coloured according to this

colour code). Please keep in mind that difficulty levels are relat-
ive and individual categories: some problem marked as difficult
may be simple for you, and vice versa. As a rule of thumb, a
problem has been classified as a simple one if it makes use of
only one idea (unless it is a really tricky idea), and a difficult
one if the solution involves three or more ideas.

It is assumed that the reader is familiar with the concepts
of speed, velocity and acceleration, radian as the measure for
angles, angular speed and angular acceleration, trigonometric
functions and quadratic equations. In few places, derivatives
and differentials are used, so a basic understanding of these con-
cepts is also advisable (however, one can skip the appropriate
sections during the first reading).

2 VELOCITIES
idea 1: Choose the most appropriate frame of reference. You
can choose several ones, and switch between them as needed.
Potentially useful frames are where:
⋆ some bodies are at rest;
⋆ some projections of velocities vanish;
⋆ motion is symmetric.

It is recommended to investigate process in all potentially use-
ful frames of reference. As mentioned above, in a good frame

of reference, some velocity or its component (or acceleration
or its component) vanishes or two velocities are equal. Once
a suitable frame of reference has been found, we may change
back into the laboratory frame and transform the now known
velocities-accelerations using the rule of adding velocities (ac-
celerations). NB! the accelerations can be added in the same
way as velocities only if the frame’s motion is translational (i.e.
it does not rotate).

pr 1. On a river coast, there is a port; when a barge passed
the port, a motor boat departed from the port to a village at
the distance s1 = 15 km downstream. It reached its destination
after t = 45 min, turned around, and started immediately mov-
ing back towards the starting point. At the distance s2 = 9 km
from the village, it met the barge. What is the speed of the
river water, and what is the speed of the boat with respect to
the water? Note that the barge did not move with respect to
the water.

Here, the motion takes place relative to the water, which
gives us a hint: let us try solving the problem when using the
water frame of reference. If we look at things closer, it be-
comes clear that this is, indeed, a good choice: in that frame,
the speed of the boat is constant, and barge is at rest, i.e. the
motion of the bodies is much simpler than in the coastal frame
of reference.

pr 2. Two planes fly at the same height with speeds v1 =
800 km/h and v2 = 600 km/h, respectively. The planes ap-
proach each other; at a certain moment of time, the plane tra-
jectories are perpendicular to each other and both planes are at
the distance a = 20 km from the intersection points of their tra-
jectories. Find the minimal distance between the planes during
their flight assuming their velocities will remain constant.

The idea 1 advises us that we should look for a frame where
some bodies are at rest; that would be the frame of one of the
planes. However, here we have a two-dimensional motion, so
the velocities need to be added and subtracted vectorially.

def. 1: A scalar quantity is a quantity which can be fully
described by a single numerical value only; a vector quantity is
a quantity which needs to be described by a magnitude (also
referred to as modulus or length), and a direction. The sum
of two vectors a⃗ and b⃗ is defined so that if the vectors are in-
terpreted as displacements (the modulus of a vector gives the
distance, and its direction — the direction of the displacement)
then the vector a⃗ + b⃗ corresponds to the net displacement as
a result of two sequentially performed displacements a⃗ and b⃗.
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This corresponds to the triangle rule of addition, see figure.
Subtraction is defined as the reverse operation of addition: if
a⃗ + b⃗ = c⃗ then a⃗ = c⃗ − b⃗.
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After having been introduced the concept of vectors, we can
also fix our terminology.

def. 2: Velocity is a vectorial quantity which can be defined
by the projections to the axes v⃗ = (vx, vy, vz); speed is the
modulus of a vector, v = |v⃗| =

√
v2

x + v2
y + v2

z . Similarly, dis-
placement is a vector pointing from the starting point of a body
to its final position; travelled distance is the sum of the moduli
of all the elementary displacements (the curve length).

For vectorial addition, there are two options. First, we can
select two axes, for instance x and y, and work with the respect-
ive projections of the velocity vectors. So, if our frame moves
with the velocity u⃗ and the velocity of a body in that frame is
v⃗ then its velocity in the lab frame is w⃗ = u⃗ + v⃗, which can be
found via projections wx = vx + ux and wy = vy + uy. Altern-
atively, we can approach geometrically and apply the triangle
rule of addition, see above.

Once we have chosen the reference frame of one of the
planes, the problem 2 can be solved by using the following
idea.

idea 2: For problems involving addition of vectors (velocities,
forces), the problems can be often reduced to the application of
simple geometrical facts, such as (a) the shortest path from a
point to a line (or plane) is perpendicular to the line (plane); (b)
among such triangles ABC which have two fixed side lengths
|BC| = a and |AC| = b < a, the triangle of largest ∠ABC has
∠BAC = 90◦.

The next problem requires the application of several ideas
and because of that, it is classified as a difficult problem. When
switching between reference frames, the following ideas will be
useful.

idea 3: Try to reveal hidden symmetries, and make the prob-
lem into a symmetric one.

idea 4: It is possible to figure out everything about a velocity
or acceleration once we know one of its components and the
direction of the vector.

Mathematicians’ way of stating it is that a right-angled triangle
is determined by one angle and one of its sides. For example,
if we know that velocity is at angle α to the horizontal and its
horizontal component is w then its modulus is w/ sin α.

pr 3. One of two rings with radius r is at rest and the other
moves at velocity v towards the first one. Find how the velocity
of the upper point of intersection depends on a, the distance
between two rings’ centres.

a

v

The idea 4 can be used again in the following problem:

pr 4. Balloons with constant ascending velocity can be used
to investigate wind velocities at various heights. The given
graph of elevation angle against time was obtained by observing
a such balloon. The balloon was released at distance L = 1 km
from the point of observation and it seemed to be rising dir-
ectly upwards. Knowing that wind velocity near the ground
was zero, find the balloon’s height at time t = 7 min after its
start and wind velocity at this height.
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In order to answer to the first question here, we need also the
following idea.

idea 5: If a graph of y versus x is given, quite often some tan-
gent line and its slope dy

dx turn out to be useful. In such cases,
unless it is obvious, you have to show that the derivative dy

dx is
related to a physical quantity z relevant to the solution of the
problem. To this end, you need to express z in terms of small
(infinitesimal) increments dx and dy, and manipulate mathem-
atically until these increments enter the expression only via the
ratio dy

dx .

To be mathematically correct, there are two options. First, in
simpler cases, you can say that the increments are infinitely
small (infinitesimal), and denote these via differentials dx and
dy. In more complex cases it may be more convenient to start
with small but finite increments ∆x and ∆y, make your calcula-
tions while keeping only the leading terms (e.g. for ∆x+∆x·∆y,
the second term is a product of two small quantities and can
be neglected as compared with the first one), and finally go to
the limit of infinitely small increments, ∆x → dx, ∆y → dy.

In order to answer the second question, we need one more
idea.

idea 6: There are calculations which cannot be done in a
generic case, but are relatively easy for certain special values
of the parameters. If some unusual coincidence stands out in
the problem (in this case the slope of the tangent is zero at the
given time) then it is highly probable that this circumstance
has to be used.

idea 7: If friction affects the motion then usually the most ap-
propriate frame of reference is that of the environment causing
the friction.
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pr 5. A white piece of chalk is thrown onto a black hori-
zontal board moving at constant velocity. Initially, the chalk’s
velocity was perpendicular to the board’s direction of motion.
What is the shape of the chalk’s trace on the board?

To solve the next problem, in addition to the previous idea we
also need to use 2, which can be rephrased in a slightly more
general (but less specific) way: some minima and maxima can
be found without taking any derivatives, in fact the solution
without a derivative can turn out to be much simpler. For this
problem, an even more narrowed down formulation would be
the following.

idea 8: If one of two vectors is constant and the direction of
the other is fixed then the modulus of their sum is minimal if
they form a right-angled triangle.

pr 6. A block is pushed onto a conveyor belt. The belt
is moving at velocity v0 = 1 m/s, the block’s initial velocity
u0 = 2 m/s is perpendicular to the belt’s velocity. During its
subsequent motion, what is the minimum velocity of the block
with respect to the ground? The coefficient of friction is large
enough to prevent the block from falling off the belt.

The next problem is slightly unusual, specific comments will
be given after the problem. To tackle such situation one can
give seemingly trivial but very often an overlooked advice.

idea 9: Read carefully the problem text, try to understand
the meaning of every statement, don’t make hasty assumptions
by yourself.

For a well-written problem, there are no redundant sentences.
Things become more troublesome if that is not the case. Some-
times the problem author wants to educate you more than just
by giving you the very problem, and tells you many things
(such as historical background) which are definitely interesting
but unrelated to the solution of the problem. It is OK if you
are solving the problem as an exercise at home and you have
plenty of time. However, you need to develop skills of parsing
fast through such paragraphs at competitions under time pres-
sure: you need to make sure that there are really no important
hints hidden inside.

pr 7. After being kicked by a footballer, a ball started to
fly straight towards the goal at velocity v = 25 m/s making
an angle α = arccos 0.8 with the horizontal. Due to side wind
blowing at u = 10 m/s perpendicular the initial velocity of the
ball, the ball had deviated from its initial course by s = 2 m by
the time it reached the plane of the goal. Find the time that
it took the ball to reach the plane of the goal, if the goal was
situated at distance L = 32 m from the footballer.

A typical problem gives all the parameter values describing a
system and then asks about its behaviour. Here, the system
might seem to be over-described: why do we need the value of s,
couldn’t we just use the initial velocity to determine the flight
time to deduce t = L

v cos α ? Such a question might arise, first
of all, because you are used to ignoring air friction. However,
no-one mentioned that you can neglect it here! Furthermore, it
is even evident that the air drag cannot be neglected, because
otherwise the ball would not depart from its free-fall trajectory!

It would be a very difficult task (requiring a numerical integ-
ration of a differential equation) to estimate the trajectory of
the ball subject to a turbulent air drag. However, this is not
what you need to do, because the air drag is not described by a
formula for the drag force, but instead, by the final departure
from the corresponding free-fall-trajectory.

So, with the help of idea 9 we conclude that the air drag
cannot be neglected here. Once we have understood that, it
becomes evident that we need to apply the idea 7. However,
even when equipped with this knowledge, you might run into
mathematical difficulties as there is no direct way of express-
ing the flight time t in terms of the given quantities. Instead,
you are advised to write down an equation containing t as an
unknown, and then to solve it.

idea 10: It is often useful first to write down an equation (or
a system of equations) containing the required quantity as an
unknown, instead of trying to express it directly (sometimes
it is necessary to include additional unknowns that later get
eliminated).

Furthermore, unlike the problems we had thus far, this problem
deals with a 3-dimensional geometry, which makes it difficult
to draw sketches on a 2-dimensional sheet of paper. Thus we
need one more simple idea.

idea 11: It is difficult to analyse three-dimensional motion
as a whole, so whenever possible, it should be reduced to two
dimensions (projecting on a plane, looking at planes of inter-
section).

The next problem illustrates

idea 12: An elastic collision is analysed most conveniently in
the centre of mass frame of the process.

Let us derive from this idea a ready-to-use recipe when a ball
collides with a moving wall. First, since the wall is heavy, the
system’s centre of mass coincides with that of the wall, hence
we’ll use the wall’s frame. In the frame of the centre of mass, if
the collision is elastic and there is no friction then due to the en-
ergy and momentum conservation, the bodies will depart with
the same speed as they approached, i.e. the normal component
of the ball’s velocity is reversed. If we apply the addition of
velocities twice (when we move to the wall’s frame, and when
we switch back to the lab frame), we arrive at the following
conclusion.

idea 13: For an elastic bouncing of a ball from a wall which
moves with a velocity u⃗ in the direction of the surface normal,
the normal component v⃗n of the ball’s velocity v⃗ is increased
by 2u⃗, i.e. v⃗ ′

n = −v⃗n + 2u⃗.

For this problem we must also remember

fact 1: Angle between velocity vectors depends on the frame
of reference!

pr 8. A tennis ball falls at velocity v onto a heavy racket
and bounces back elastically. What does the racket’s velocity
u have to be to make the ball bounce back at a right angle to
its initial trajectory and not start spinning if it did not spin
before the bounce? What is the angle β between u⃗ and the
normal of the racket’s plane, if the corresponding angle for v⃗ is
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α?

If we keep in mind the idea 9 and read the text carefully, we
notice that the racket is heavy so that we can use the idea 13.
Also, pay attention that the ball will not rotate after the colli-
sion — this is important for finding the parallel (to the racket’s
plane) component of the velocity.

Earlier we mentioned that vectors can be dealt with either
geometrically (e.g. by applying the triangle rule for a sum of
vectors and solving a trigonometrical problem), or algebraically
using projections. Quite often, geometrical approach provides
shorter solutions, but not always; this observation leads us to
the following recommendation.

idea 14: For vectorial calculations, prefer geometrical ap-
proach, but if it seems unreasonable (e.g. some of the conditions
are formulated through the projections of the vectors) switch
to the algebraic approach and write expressions down in terms
of components.

For the algebraic approach, optimal choice of axes is very
important. “Optimal” means that the conditions are written
in the simplest possible way. Sometimes it may happen that
the most useful coordinate axes are not even at right angles.

For the problem 8, geometrical solution turns out to be sim-
pler, but more difficult to come up with. This is quite typical:
algebraic approach leads to a brute-force-solution when it is
clear from the beginning what you need to do, but the calcula-
tions are mathematically long. Still, there are no fundamental
difficulties and you just need to execute it. As long as the
mathematical part will not be unreasonably long or leading to
fundamental difficulties (such as unsolvable equations), brute
force approach is still OK: figuring out an elegant solution can
also take some time.

Typically, the geometrical solutions of physics problems rep-
resent very simple geometrical tasks and hence, finding these
shorter-than-algebraic solutions is also quite easy. In this case,
however, the geometrical task turns out to be quite a tricky
problem. While the idea 14 suggests that the algebraic ap-
proach is good for problem 8 (the no-rotation-requirement gives
us a condition for the parallel component of the velocity), it is
recommended that you try both methods here. In both cases
you need one more mathematical idea.

idea 15: Two vectors a⃗ = (ax, ay, az) and b⃗ = (bx, by, bz)
are perpendicular if their scalar product is zero, axbx + ayby +
azbz = 0. (This assumes that the axes x, y and z are perpen-
dicular to each other.)

idea 16: For trigonometric problems involving right triangles
keep in mind that the circumcentre of a right triangle is at the
centre of the hypotenuse, hence the median drawn from the
right angle divides the triangle into two isosceles triangles, and
the right angle into the angles equal to the acute angles of the
triangle.

Idea 1 told us to make use of switching between different
frames of reference. This idea can be also used when dealing
with rotational motion.

def. 3: Angular velocity ω⃗ equals by modulus to the rotation
angle (in radians) per unit time, and is parallel to the rotation

axis, the direction being given by the screw rule (if the screw is
rotated in the same way as the body, the vector points in the
direction of the screw movement).

idea 17: When switching between rotating frames of refer-
ence, angular velocities are to be added in the same as transla-
tional velocities in the case of translationally moving frames of
reference. NB! This remains valid even if the angular velocit-
ies are not parallel (although non-small rotation angles can be
added only as long as the rotation axis remains unchanged).

This idea is illustrated by a relatively simple problem below.

pr 9. Vertical mirror with two reflecting surfaces (front and
back) rotates around a vertical axis as shown in figure, with
angular speed ω. There is an unmoving point source of light S

at a distance a from the rotation axis. Find the speed of the
image of the point source as a function of time.

ω

a

S

3 ACCELERATIONS, DISPLACEMENTS
Thus far we dealt with instantaneous or constant velocities, and
in few cases we applied a simple formula s = vt for displace-
ments. In general, when the velocity v⃗ is not constant, the dis-
placement is found as the curve under the graph of the velocity
as a function of time. For instance, the displacement along
x-coordinate ∆x is surface area under the graph vx = vx(t);
mathematically we can write it via integral ∆x =

∫
vx(t)dt.

You don’t need to know more about integrals right now, just
that it represents surface areas under graphs.

idea 18: Calculation of many physical quantities can be re-
duced (sometimes not in an obvious way) to the calculation of
surface areas under a graph (i.e. to an integral). In particular:
distance is the area under a v −t curve (velocity-time), velocity
the area below an a − t curve etc.

Note that drawing a graph is not always absolutely necessary (if
you are skilled with integrals, formulae can be derived analytic-
ally, without drawing graphs), but doing it helps to imagine the
process. Visualisation of this kind is always beneficial, it sim-
plifies finding the solution and reduces the chances of making
mistakes.

pr 10. A particle starts from the origin of coordinates; the
figure shows its velocity as a function of time. What is its
maximum shift from the origin?

2

4

6

-2

0

v (m/s)

t (s)
5 10 15

The next problem is much more difficult, although it is also
reduced to finding a surface area; due to difficulty, the full
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solution (apart from replotting the graph and numerical calcu-
lations) is given under “hints”.

pr 11. The acceleration of a boat depends on its speed as
shown in graph. The boat is given initial speed v0 = 4 m/s.
What is the total distance travelled until the boat will almost
come to rest?

0.6

1 2

0.4

3

a (m/s2)

v (m/s)

0.2

The idea 18 can be also used to derive basic formulae for
displacement in the case of a motion with constant accelera-
tion. Suppose that a body has initial speed v0 and moves with
constant acceleration a; we want to know to which distance it
travels by the moment of time t. The surface area under the
graph is a right trapezoid (see figure), with surface area equal
to the product of the median v0 + 1

2 at, and the height t, i.e.
s = v0t + at2/2.

v0

t

v0+at

t

v

Alternatively, if we are given the initial and final velocities (v0
and v1) instead of the travel time, the median of the trapezoid
is expressed as 1

2 (v0 + v1), and the height as t = (v1 − v0)/a.
This leads us to s = (v0 + v1)(v1 − v0)/2a = (v2

1 − v2
0)/2a. If

we rewrite it as as = 1
2 (v2

1 − v2
0), we can call it the energy

conservation law for unit mass if the free fall acceleration is a.

fact 2: If a body moves with initial speed v0, final speed v1
and constant acceleration a during time t, the distance trav-
elled

s = v0t + 1
2

at2 = v2
1 − v2

0
2a

.

The next problem can be solved in various ways, but the
simplest solution involves the following idea.

idea 19: Sometimes it is useful to change into a non-inertial
frame of reference: velocities are added just in the usual way,
v⃗lab = v⃗rel+v⃗fr, where v⃗lab is the velocity in the lab frame, v⃗rel —
velocity in the moving frame, and v⃗fr — the speed of that point
of the moving frame where the body is at the given moment.
If the frame moves translationally (without rotations) then the
accelerations can be added in the same way, a⃗lab = a⃗rel + a⃗fr

1.

In particular, if a problem involves two or more free-falling
bodies then using a free-falling frame simplifies calculations
significantly.

It should be emphasized that if the frame rotates, the formula
for acceleration obtains additional terms.

pr 12. Two smooth slides lie within the same vertical plane
and make angles α to the horizontal (see the figure). At some
moment, two small balls are released from points A and B and
they start sliding down. It took time t1 for the first ball that
started from point A to reach the ground; for the second one
the time of descent was t2. At what time was distance between
the balls the smallest?

A

B

α α

idea 20: Sometimes, it is possible to separate two- or three-
dimensional motion of a body into independent motions in per-
pendicular directions: (a) motion along x is independent from
the motion along y for 2D geometry; (b) motion along x is in-
dependent from the motion along y, which is independent from
the motion along z; (c) motion along x is independent from the
motion in y − z-plane. In particular, this can be done for fric-
tionless collisions from a plane2: if the axis x lies in the plane,
and y is perpendicular to it, you can study separately motion
along x and motion along y.

The simplest application of this idea is provided by a two-
dimensional motion of a body in an homogeneous gravity field,
which is studied in every textbook on kinematics: horizontal
and vertical motions are decoupled, because vertical acceler-
ation g does not depend on the horizontal coordinate x and
horizontal velocity vx, and body moves with a constant speed,
and horizontal acceleration (0) does not depend on the vertical
coordinate x and vertical velocity vy. As a result, we obtain
x = v0xt and y = v0yt − gt2/2 (where v0x and v0y are the re-
spective initial velocity components); the respective trajectory
in x − y-plane is a parabola which we obtain if we eliminate t

from the second equation by substituting t = x/v0x.

fact 3: Free fall trajectory of the centre of mass a body in
homogeneous gravity field g is a parabola, parametrically given
as x = v0xt and y = v0yt − gt2/2.

Let us discuss in more details how to apply the idea 20 to
frictionless interactions (collisions or sliding) of a body with a
plane. If the plane is inclined, we need to take the axes to be
inclined as well; then, the gravitational acceleration will have
a non-zero component along both axes, i.e. motion will have
acceleration in both directions.

fact 4: Free fall problems can be also analysed when using
inclined system of axis (this might be useful because of idea
20); then, the free fall acceleration is decomposed into two re-

1This can be easily seen if we relate the respective radius vectors as r⃗lab = r⃗rel + r⃗fr and take twice the time derivative: the derivative of a sum is
the sum of derivatives, even if we deal with vectors (this can be understood if we work with projections, e.g. the addition rule for the x-components
of the accelerations can be obtained by taking twice the time derivative of the equality relating the x-coordinates, xlab = xrel + xfr).

2As long as there is no other mechanism (such as the Lorenz force) which couples the motions in different directions
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spective perpendicular components, g⃗ = g⃗x+g⃗y with gx = sin α

and gy = cos α, α being the angle between the surface and the
horizon.

During a collision, as there is no friction force, vx (parallel to
the surface velocity component) does not change, i.e. it does
not “notice” that there was a collision: in order to analyse the
evolution of the x-coordinate, we can completely forget about
the changes of the y-coordinate (and vice versa).

If the surface is curved, generally such a separation is no
longer possible. Indeed, previously x was independent of y be-
cause the dependence of the acceleration on the coordinates is
introduced by the normal force, which is a function of y only,
and has no x-component. If the surface is curved, it is im-
possible to have the x-axis to be everywhere parallel to the
surface: the acceleration due to the normal force has both non-
vanishing x and y components, and depends both on x and y

coordinates. However, in the case of side surfaces of cylinders,
prisms and other generalized cylinders3, it is still possible to
find one axis x which is everywhere parallel to the surface and
hence, motion along x can be separated from the motion in
y − z-plane.

pr 13. An elastic ball is released above an inclined plane
(inclination angle α) at distance d from the plane. What is
the distance between the first bouncing point and the second?
Collisions occur without friction.

The next problem makes also use of the idea 20; however, one
more idea is needed, see below.

pr 14. A puck slides onto an icy inclined plane with inclin-
ation angle α. The angle between the plane’s edge and the
puck’s initial velocity v0 = 10 m/s is β = 60◦. The trace left
by the puck on the plane is given in the figure (this is only
a part of the trajectory). Find α under the assumption that
friction can be neglected and that transition onto the slope was
smooth.

αβ

2. 5 m

2.5m

The last sentence here is very important: if the transition is
sharp, the puck approaches the inclined plane by sliding along
the horizontal and collides with it — either elastically in which
case it jumps up, or plastically. In particular, if the collision
is perfectly plastic then that part of the kinetic energy which
is associated with the motion along the surface normal of the
inclined plane is lost. More specifically, if we introduce perpen-
dicular coordinates so that the x-axis is along the contact line

of the two surfaces and y-axis lays on the inclined surface, x, y,
and z-motions are all separated; at the impact, vz goes to zero,
and due to the absence of friction, vx and vy are preserved.

In this problem, however, the transition from one surface
to the other is smooth: around the line separating the two
flat surfaces, there is a narrow region where the surface has a
curvature. Within this narrow region, the motion in y- and
z-directions cannot be separated from each other, and we need
one more idea.

idea 21: If a force is perpendicular to the direction of motion
(normal force when sliding along a curved surface, tension in a
rope when a moving body is attached to an unstretchable rope
fixed at the other end, force on a charge in magnetic field) then
the velocity vector can only turn, its modulus will not change.4

pr 15. Three turtles are initially situated in the corners of
an equilateral triangle at distances 1 m from one another. They
move at constant velocity 10 cm/s in such a way that the first
always heading towards the second, the second towards the
third and the third towards the first. After what time will they
meet?

Two approaches are possible here: first, we may go into the
frame of reference rotating with the turtles, in which case we
apply the following idea.

idea 22: Sometimes even a reference frame undergoing very
complex motion can be useful.

Alternatively, we can use

idea 23: Instead of calculating physical velocities, it is some-
times wise to look at the rate of change of some distance, the
ratio of two lengths, etc.

The following problem requires integration5, so it can be
skipped by those who are not familiar with it.

pr 16. An ant is moving along a rubber band at velocity
v = 1 cm/s. One end of the rubber band (the one from which
the ant started) is fixed to a wall, the other (initially at dis-
tance L = 1 m from the wall) is pulled at u = 1 m/s. Will the
ant reach the other end of the band? If yes then when will it
happen?

Here we need to apply the

idea 24: For some problems, optimal choice of parametriza-
tion can simplify mathematical calculations significantly. An
incomplete list of options: Cartesian, polar, cylindrical, and
spherical coordinates; travel distance; Lagrangian coordinates
(i.e. for fluids flow using the initial coordinate of a fluid particle
instead of its current coordinate); relative position of a particle
according to a certain ranking scheme, etc.

Here, the problem itself contains a hint about which type of
parametrization is to be used. It is clear that the Cartesian
coordinate of the ant is not good: it does not reflect the pro-
gress of the ant in advancing along the rubber band. In order
to describe such a progress, we can use the relative position on
the band: which fraction k of the rubber is left behind; the ant

3Surfaces with constant cross-sections.
4This is the energy conservation law using the fact that forces perpendicular to the velocity will not perform work.
5You may find helpful to know that

∫
dx

ax+b
= a−1 ln(ax + b) + C
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starts with k = 0, and k = 1 corresponds to the ant reaching
the end of the band. The parameter k is essentially a Lag-
rangian coordinate: it equals to the initial coordinate of the
current rubber point in the units of the initial rubber length.

4 OPTIMAL TRAJECTORIES
Majority of the kinematical optimal trajectory problems fall
into two categories: the problems of finding the trajectories of
shortest travel time, and the problems of finding the smallest
initial speeds of a free-falling body.

idea 25: In those kinematics problems where velocities in vari-
ous environments are given and the quickest way from point A
to point B is asked, Fermat’s principle (formulated for geomet-
rical optics) can be of help.
Namely, if we have a configuration of bodies with different in-
dices of refraction, and if a ray of light originating from point
A passes through point B then the actual path of the ray is
the quickest way for light to reach point B from point A (as a
reminder, if the index of refraction of some environment is n

then the travelling speed of light is c/n). Therefore time along
path s1 or s2 is longer than along s0, see figure.

0
2

1

21

s

s

s

nn

A

B

We must clarify that the Fermat’ principle applies to a local
minimum: the travel time along the path s0 needs to be shorter
than for any other path which departs from the path s0 but
remains in its immediate neighbourhood. Furthermore, it is re-
quired that for small path variations, the travel time variations
remain also small. The following figure clarifies in which cases
the Fermat’ principle is applicable.

A B

mirror

glass 
plate
s0

s2

s3

s4

s5
s6

s1

As the propagation speed in the glass plate is smaller than in
the air, the global minimum of the travel time is achieved for
the path s1. However, such arbitrarily small variations of the
path s1 which go thorough the glass plate have a non-small
change in the travel time, hence s1 is not a valid light beam
path (the path can be deformed downwards, e.g. into s3, but up-
wards deformations incur a jump in travel time due to passing
through the glass plate). Next, the path s0 provides a good
local minimum: the travel time along s0 is smaller than along
any small variation of the path s0, and if the path variation is
small, the time variation remains also small. Hence, the Fer-
mat’ principle can be applied: the path s0 provides a valid

light beam path. Finally, in the case of reflections, we need to
compare only those paths which include similar reflections. So,
the path s5 is faster than the path s4, but the former does not
involve reflections and cannot be included into the set of ref-
erence paths. Among those paths which include one reflection
from the mirror and represent a small variation of the path s4
(such as the path s6), the path s4 is the fastest one and hence,
represents a valid light beam path.

If light can travel from one point to the other along several
different paths (e.g. from some point through a lens to the
optical image of that point) then time along all these paths is
exactly the same.

In order to apply the idea 25 to kinematics problems, we
often need the Snell’s law.

fact 5: Let a point A be situated in a medium where the light
propagation speed is v1, and point B — in a medium where the
speed is v2. Then, the light propagates from A to B according
to the Snell’s law: it refracts at the interface so that the angle
between the surface normal and the path forms angles α1 and
α2 (see figure) satisfying equality sin α1/ sin α2 = v1/v2.

A

B

α2

α1

pr 17. A boy lives on the shore OP of a bay MOP (see the
figure). Two shores of the bay make an angle α. The boy’s
house is situated at point A at distance h from the shore and√

h2 + l2 from point O. The boy wants to go fishing to the
shore OM . At what distance x from point O should be the
fishing spot, so that it would take as little time as possible to
get there from the house? How long is this time? The boy
moves at velocity v on the ground and at velocity u < v when
using a boat.

l

h

O

M P

A

α

Here we can use a small addition to the last idea: if the quickest
way to a plane (in a 3-d problem) or to a line (in 2-d) is asked
then this plane or line can be substituted with a point very far
(at infinity) in the perpendicular direction to it. The reason for
that is quite simple: it takes the same amount of time to reach
any point on the plane (line) from that very-very distant point.
If we think about this in terms of geometrical optics then it
means that a set of light rays normal to the surface falls onto
the plane (line).

pr 18. A boy is situated at point A in a river, at distance
a from the riverbank. He can swim at speed u or run at speed
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v > u on the shore; water flows in the river at velocity w > u.
The boy wants to reach the point C upstream on the riverbank
with minimal time. At what distance x from point B aligned
with point A should he get out of the water?

C v

w

u

x

a

B

A

Here we have two options: first, to use a brute force approach
and express the travel time t as a function of x, and then equate
dt
dx = 0. The second option is to apply the methods of geomet-
rical optics. However, notice that in the lab frame, the speed in
water depends on the direction of swimming, and in the water’s
frame, the starting and destination points are moving.

warning: Fermat’s principle can be applied only if velocities
are the same in all directions and initial and final points are at
rest.

Now we have two sub-options. First, we can try to modify the
problem so that while the answer remains the same, the Fer-
mat’s principle becomes applicable; try to do this. The second
option is to use the Huygens’ method of building wavefronts;
let us consider this approach in more details

idea 26: When studying a reversible process, sometimes it is
easier to analyse the reverse process.

Notice that in the case of the problem 18, the process can be
reversed: if we make all the velocities opposite then the river
flows from right to left, the boy starts running from point C,
and wants to reach the point A in the river as fast as pos-
sible. Obviously, if a certain forward-process-trajectory is the
fastest among all the alternatives then the same applies to the
respective reverse process.

idea 27: For the fastest path problems in kinematics, the
approach based on the Huygens principle can be used.

For wave propagation problems, according to the Huygens prin-
ciple, wave fronts can be constructed step-by-step, by putting a
series of fictitious light sources at a previous wave front. Then,
after a short time period t, around each fictitious light source
a circular wavefront of radius ct is formed (where c stands for
the speed of light); the overall new wavefront is the envelope
of all the small wavefronts, see figure (orange dots are the first
generation Huygens sources, and the orange circles are the re-
spective wavefronts; red lines are the overall wavefronts, and
brown colour corresponds to the second generation Huygens
sources).

wave source

In the case of light waves, once we have the pattern of wave-

fronts, the rays of light can be found as such curves which are
everywhere perpendicular to the wavefronts.

As a simple demonstration of how the Huygens principle
can be applied for calculations, let us express the angle of the
so-called Mach cone in terms of wave speed c and wave source
speed u. If the wave source moves faster than the waves, it
gives rise to what is known as the Cherenkov radiation, see be-
low6. Let us consider a boat moving along a straight line and
construct the Huygens wavefront as discussed earlier, see the
figure below. We have drawn a series of circles corresponding to
disturbances created my the moving source along its trajectory
at a series of moments of time. The envelope of the wave-
fronts is a straight line, because the ratio of a circle’s radius
is proportional to the distance of its centre from the current
position O of the wave source. The angle ∠POQ is referred
to as half of the Mach cone angle — it is called cone because
in three-dimensional geometry, the circles become spheres and
the envelope of the wave fronts becomes a cone. It is easy to
see that sin∠POQ = cT

vT = c
v .

Continuing with the problem 18 (with the reversed velo-
cities as discussed above), we need to build “wavefronts” as
the sets of farthest points which the boy can reach for a given
moment of time T once departing from point C and starting
swimming at an arbitrary intermediate moment of time t < T .
The construction of such a wavefront is depicted in the figure
below.

vT

w

u

A

vt -w(T - t)
wT

uT u(t - T )

C

Here, the green circle corresponds to the set of farthest points
the boy can reach if he starts swimming immediately, and the
cyan dot depicts his position if he continues running along the
coast; the bold black line shows the overall wavefront. If we let
the wavefront evolve, it propagates towards the point A and
reaches it at a certain moment T . Our procedure essentially
tests all the swimming strategies and hence, T equals to the
shortest travel time; what is left to do, is to trace back, which
Huygens sources created that part of the wavefront which met
the point A, i.e. what would be the optimal trajectory of the
boy.

idea 28: Questions involving optimal ball-throwing can be of-
ten reduced to the ballistic range problem: a cannon can shoot
projectiles with a fixed launching speed; in which range can
the targets be hit? Therefore, it is useful to know the answer:

6Classically, Cherenkov radiation is used for radiation created by superluminal charges: in dielectric medium, the speed of light waves is reduced
n times, where n is the coefficient of refraction, and relativistic particles can move faster than that; however, sonic booms (shock wave caused by a
supersonic flight) and waves behind fast boats are caused by the same physical phenomenon.
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the targets should be within a paraboloidal region, and the can-
non is at its focus; this paraboloid is the envelope of all the
possible projectile trajectories, see figure (red curve is the en-
velope, the cyan curve — trajectories for 45◦-launching angles,
green curves — trajectories for 0◦-launching angles).

In order to be able to use the full potential of the idea 28, the
following simple facts need to be kept in mind.

fact 6: The black and cyan curves (in the figure above)
represent the optimal trajectories for hitting targets at the red
parabola: for these trajectories, the projectile’s launching speed
at the origin is minimal.

Indeed, for a target inside the region R, the region can be made
smaller by reducing the launching speed in such a way that the
target would still remain inside the shooting range.

fact 7: When a target is shot with the smallest possible
launching speed, the trajectory and the shooting range bound-
ary (corresponding to the launching speed) are tangent to each
other at the target’s position.

If you trust what has been stated above (or have proved
it once and now want to use the fact), it is easy to figure
out the parameters of the parabola: first, the trajectory for
90◦-launching angle meets the tip of the parabola, and the red
curve needs to have the same shape as the green curve, because
the green one represents the optimal trajectory for targets at
very low altitudes beneath the horizon.

Trust, but verify: let us solve the following problem.

pr 19. A cannon is situated in the origin of coordinate axes
and can give initial velocity v0 to a projectile, the shooting dir-
ection can be chosen at will. What is the region of space R
that the projectile can reach?

This question is an example of a class of problems that seem
easy, but the solution can get very long if brute force is ap-
plied. This can lead to mistakes or giving up on the problem
altogether.

warning: If equations get tediously long then it is the right
time to pause and think whether there can be an alternative
way to reach the answer. If one exists, it pays to quit and try
out the other path and see if it is shorter.

In such cases, before actual calculations, you should outline a
strategy for tackling the problem: you should see in your mind
a “road”, a sequence of calculations which you hope you are
able to perform, and which, if successful, lead to the answer.

Here a strategy which comes to mind is compiling an equa-
tion for the launching angle α required for hitting a target at
the coordinates (x, z); if there are solutions to this equation,
the target lies within the region R, and if there are no solu-
tions then it lies outside. Then, formula describing the region
comes from the condition (inequality) which needs to be sat-
isfied for the existence of solutions. Furthermore, it is quite
easy to figure out that if the point T = (x, z) lies inside the re-
gion R, there should be actually two solutions for the launching
angle. Indeed, the target can be hit both at the rising leg of the
projectile’s trajectory, and at the descending leg of it7 So, we
expect that the equation has two solutions (T is within R), one
solution (T is at the boundary of R), or no solutions (T is out-
side of R). Such a behaviour is consistent with the quadratic
equation, so we can hope that with a good parametrization (c.f.
idea 24), we obtain a quadratic equation. To summarize, let
us formulate

idea 29: If it is asked to find the region in which a solution
exists to a certain problem then the boundary of this region can
often be found as a curve for which some discriminant vanishes.

The solution of problem 19 can be also used to derive a simple
particular conclusion which we formulate as a fact.

fact 8: If the target is at the same level as the canon, the op-
timal shooting angle (corresponding to the smallest launching
speed) is 45◦.

Indeed, from the solution of problem 19 we have a quadratic
equation for the shooting angle, where we can put z = 0; the
required result is immediately obtained if we use the fact that
for optimal shooting, the discriminant of the equation is zero.

pr 20. Under the assumptions of the problem 19, and know-
ing that the boundary of the region R is a parabola, show that
the cannon is at the focus of the parabola.

While there is an extremely simple solution to this problem, it
might not be easy to come up with it, because we need

idea 30: For several problems of kinematics, geometrical solu-
tions making use of the properties of a parabola are possible;
typically, such solutions are considerably shorter than the al-
ternatives.

fact 9: Each parabola has a focus, the properties of which
are most easily expressed in terms of geometrical optics: if
the parabola reflects light, all those rays which are parallel
to the symmetry axis are reflected to the focus (dashed lines
in the figure); due to the Fermat’ principle, this means also
that for each point on the parabola the distance to the focus
plus the distance to the infinitely distant light source are equal,
l1 + h1 + d1 = 2h0 + d0 = . . .; since d0 = d1 = . . ., we have
2h0 = l1 + h1 = l2 = l3 + h3 (see the figure).

7This is somewhat simplifying statement; to be more rigorous, we need to consider the two intersection points of the projectile’s trajectory with a
horizontal line z = z0, and how these intersections x = x1 and x = x2 (with x2 > x1) move when the launching angle is changed from 90◦ to 0◦: for
α = 90◦, they are both at x = 0, and start moving to larger values of x with increasing α. For a certain value of α, x2 reaches its maximal value xmax
and starts decreasing; the two solutions merge and disappear when the trajectory is tangent to the line z = z0. Hence, during this process, each point
on the segment 0 < x < xmax is passed exactly two times by one of the intersection points (either x1 or x2), and the target at that point (x, z0) can
be hit by the two corresponding values of α.
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pr 21. What is the minimum initial velocity that has to be
given to a stone in order to throw it across a sloped roof? The
roof has width b, its two edges have heights a and c.

a

b

c

This problem has two solutions, a brute force one, and a short
but tricky one. Both solutions, however, start in the same way,
by using

idea 31: To find a minimum (or a maximum), we have to
vary free parameters (in this case the throwing point and the
angle) by infinitesimally small increments and see what hap-
pens to the quantity of interest. If it increases for all allowed
variations, we have found a minimum.

You are supposed to use this method for showing that the stone
touches both edges of the roof.

Both solutions share also the next step, reducing the prob-
lem to the case c = 0. This reduction would be very useful
because then we know the optimal throwing point — the right
edge of the roof. For this step you need

idea 32: For a free-fall of a body, there is an integral of mo-
tion (quantity which is conserved), 1

2 v2 − gh, where v is an
instantaneous speed, and h is the current height of the body.

This, of course, is a particular form of the energy conservation
law, which will be considered in many more details in the other
sections (mainly in “Mechanics”).

Next we need to apply the idea 28; while in the case of the
brute force approach, this is a straightforward mathematical
application of the idea, the trickier solution makes use of the
idea 30 (and of the fact 9).

Let us consider one more problem which illustrates the us-
age of the idea 30.

pr 22. A target is shoot with the smallest possible launch-
ing speed; show that the launching velocity is perpendicular to
the terminal velocity (i.e. at the target).

Note that this problem can be also solved without using
the idea 30. Then, instead, you should use the idea 19 by con-
sidering the relative motion of two projectiles which are shoot
simultaneously at slightly different angles (still, very close to
the optimal angle) and with the same speed. You also need to

make use of mathematical observations, formulated below as a
facts.

fact 10: If a function f(x) has a minimum or maximum at
x = x0 then for small departures ∆x from x0, the variation of
the function value ∆f = f(x+∆x)−f(x) remains quadratically
small8 and can be often neglected.

fact 11: As it follows from the vector addition rule (c.f. def.
1), if the difference of two vectors of equal moduli is very small,
it is almost perpendicular to each of them.

Try to solve the problem 22 using this alternative approach, as
well!

5 RIGID BODIES, HINGES AND ROPES
pr 23. A rigid lump has been squeezed between two plates,

one of which is moving at velocity v1 and the other at v2. At
the given moment, velocities are horizontal and the contact
points of the lump and plates are aligned. In the figure, mark
all points of the lump with velocity modulus equal to v1 or v2.

v1

v2

This question is entirely based on

idea 33: The motion of a rigid body can always be considered
as rotation about an instantaneous axis of rotation (for 2D geo-
metry, about a rotation centre) with a certain angular speed.

O

r~

v~

v~1

2v~

This centre of rotation can be reconstructed if

(a) we know the directions of velocities of two points and these
directions are not parallel - it is where perpendicular lines
drawn from these points intersect;

(b) we know the velocities of two points, and the vectors are
parallel and perpendicular to the line connecting these
points - we find the intersection of the line connecting
the points and the line connecting the tips of velocity
vectors (see the figure)

Note that it is also possible that the velocities of two points
are equal (by modulus and by direction), in which case the ro-
tation centre is at infinity, i.e. the body moves translationally.
All the other combinations not covered by options (a) and (b)
are impossible for a rigid body.

8This is the consequence of the Taylor expansion, to be discussed in more details in other booklets.
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Once the centre of rotation has been found then the velocity
of any point can be found as a vector perpendicular to the line
drawn from the centre of rotation with modulus proportional
to distance r from the centre of rotation (see the figure), ac-
cording to the formula v = ωr, where ω is the instantaneous
angular speed.

The last formula can be generalized:

fact 12: if a vector a⃗ rotates with an angular speed ω⃗ so that
the rotation axis is perpendicular to a⃗ then the time derivative
da⃗
dt is perpendicular to a⃗ and | da⃗

dt | = ωa

This formula is derived similarly to the fact 11: we need to
apply the definition 1 and consider a small time increment
∆t. According to the definition of vector derivatives, da⃗

dt equals
to ∆a⃗

∆t at the limit of infinitesimally small increments ∆a⃗ and
∆t. The increment ∆a⃗ is calculated using the definition 1:
this is the base of the isosceles triangle, the equal sides of
which are formed by the initial and final positions of the vector
a⃗. Since the vector rotates at the angular speed ω, the apex
angle (in radians) is ω∆t; therefore, the base length equals to
2a tan(ω∆t/2) ≈ aω∆t9 Thus,

∣∣ ∆a⃗
∆t

∣∣ = aω∆t
∆t = aω10. Note that

the formula can be rewritten via a vector product as da⃗
dt = ω⃗×a⃗.

Within this booklet, vector products will not be needed; how-
ever, it is still useful to know that a vector product of two vec-
tors a⃗ and b⃗ equals by modulus to the surface area S = ab sin α

of the parallelepiped built on the vectors a⃗ and b⃗ (α is the angle
between a⃗ and b⃗); the vector is perpendicular to both a⃗ and b⃗,
the direction being given by the screw rule (rotate the screw
from the first vector to the second one).

Now we can apply the fact 12 to a rotating velocity vec-
tor: let a point rotate with constant angular speed ω around
the origin so that its distance to the origin remains constant.
According to the formula we obtain v =

∣∣ dr⃗
dt

∣∣ = ωr and
a =

∣∣ dv⃗
dt

∣∣ = ωv = ω2r. The last equation can be also writ-
ten for the acceleration vector as a⃗ = −ω2r⃗; the minus sign
means that the acceleration is directed towards the origin; be-
cause of this it is called centripetal acceleration. If the angular
velocity is not constant, the point will obtain also a tangential
acceleration (tangent to the trajectory).

def. 4: Angular acceleration is defined as the time derivative
of the angular velocity, ε⃗ = dω⃗

dt .

Let us consider the case when the rotation axis remains fixed;
then, both ε⃗ and ω⃗ have a fixed direction and hence, are essen-
tially scalar quantities, so that the vector signs can be dropped.
In order to derive an expression for the tangential acceleration,
let us consider a small time increment ∆t; this corresponds to
a small angular speed increment ∆ω, as well as to a small ve-
locity increment ∆v⃗. Let us decompose the velocity increment
into radial and tangential components, ∆v⃗ = ∆v⃗r + ∆v⃗t. Now,
the velocity vector changes both its direction and length, see
figure below.

ω∆t

v~

v~ ’

∆v~t

∆v~r

Note that in the figure, the increments are exaggerated, ac-
tually these are very small. It is easy to see from the fig-
ure that for small angle approximation, ∆vr = ω∆t · v; with
this we recover the expression for the radial (centripetal) ac-
celeration ar = ωv: we just need to divide the equality
by ∆t. Meanwhile, due to the small angle approximation,
|∆⃗vt| ≈ |v⃗′| − |v⃗| = ω′r − ωr = ∆ωr = ε∆tr. Hence, at the
limit of infinitesimal increments, at = |∆vt|

∆t = εr. This leads
us to

fact 13: If a rigid body is rotating about a fixed axis then
the acceleration of any of its points has two components: cent-
ripetal acceleration ω2r = v2/r directed towards the axis of
rotation and a component perpendicular to it, the tangential
acceleration ϵr. NB! the formula cannot be applied if we deal
with an instantaneous rotation axis11 (more precisely, the for-
mula can be used if the acceleration of the instantaneous ro-
tation axis is zero). The formula v2/r can be also used for
the perpendicular to the motion acceleration of a point along
a curved trajectory; then, r is the curvature radius of the tra-
jectory.

pr 24. Cycloid is a curve which can be defined as a traject-
ory of a point marked on the rim of a rolling wheel or radius
R. Determine the curvature radius of such curve at its highest
point.

idea 34: For kinematics problems, often the tangential accel-
eration is not known initially, but the rotation speed is known
and hence, the centripetal acceleration can be easily calculated
using the fact 13. You may be able figure out the direction of
the acceleration using other arguments, in which case you can
recover the whole acceleration by using the idea 4.

The next problem will illustrate this idea. However, the
following idea will be also useful.

idea 35: Since the distance between any two points is fixed in
a rigid body, the projections of velocities of both points on the
line connecting them are equal. NB! the respective projections
of accelerations are not necessarily equal due to the centripetal
acceleration; when dealing with accelerations you need to use
the fact 13 in one point’s frame of reference, instead.

pr 25. A hinged structure consists of two links of length
2l. One of its ends is attached to a wall, the other is moving
at distance 3l from the wall at constant vertical velocity v0.
Find the acceleration of the hinge connecting the links when a)
the link closer to the wall is horizontal b) the velocity of the
connection point is zero.

9Here we have used approximate calculation for small angles: sin α ≈ tan α ≈ α, where α ≪ 1 is measured in radians.
10We have replaced approximate equality by strict equality because the tangent is taken from an infinitely small angle
11For instantaneous axis, r would not be constant, which makes the derivation void.
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2l

2l

3l

v

Now, let us continue with rolling spool problems.

pr 26. Some thread has been wound around a cylinder, the
other end of the thread is fixed to a wall. The cylinder lies
on a horizontal surface that is being pulled with horizontal ve-
locity v (perpendicular to the axis of the cylinder). Find the
velocity of the cylinder’s axis as a function of α, the angle that
thread makes with the vertical. The cylinder rolls on the sur-
face without slipping.

v

α

This problem can be solved using the idea 33. However it can
be also solved using the following idea (you are encouraged to
try both methods). and the spool is rolling along some surface.
In these cases, we need

idea 36: Problems involving spools and rope (un)wounding
can be typically solved by writing down the “rope balance”
equation, i.e. by relating the rope unwinding rate to the velo-
city of the spool.

When writing down such equations, it is useful to notice that as
long as the unwound rope does not rotate, the rate of unwind-
ing equals to ΩR, where Ω is the spool’s angular speed, and R

— its radius; if the unwound rope rotates, idea 17 can be used
to conclude that now the spool’s angular speed Ω needs to be
substituted with the difference of two angular velocities.

In order to relate the rope unwinding rate to the motion of
the spool, the following very general idea (with a wide applic-
ation scope) is helpful.

idea 37: Draw two very close (infinitesimally close) states of
the system and examine the change in the quantity of interest
(in this case, the length of the rope).

When doing that, we should not forget that the change was
infinitesimal, so that we can simplify our calculations (e.g. two
subsequent states of the rope can be considered parallel). Note
that we have actually already used this method when deriving
the fact 13.

pr 27. One end of a rod of length l is supported by the
floor and the other leans against a vertical wall. What is the
velocity u and acceleration a of the lower end at the moment
when the upper end is sliding downwards at a constant velocity

v and the angle between the floor and the rod is α?

Here the velocity can be found using the idea 33 and the ac-
celeration — using the idea 34; however, please solve it now
using the following idea (its full solution is given in the section
of hints).

idea 38: If parts of a system are connected by some ties with
fixed length then one way of calculating velocities and acceler-
ations is to write out this relation in terms of coordinates and
take the time derivative (twice for acceleration) of the whole
expression.

6 MISCELLANEOUS TOPICS
idea 39: Some kinematics problems are based on the con-
tinuity law12: if there is a stationary flow of something and we
consider a certain region of space, as much as flows in, flows
also out.

Let us illustrate the continuity law with the following problem.

pr 28. A single-lane road is full of cars which move at the
speed v = 90 km/h. The average distance between neighbour-
ing cars is such that a standing observer would measure a time
lapse τ = 2 s from the head of the first car until the head of
the second car. One car has to stop due to malfunctioning and
a queue of standing cars starts forming behind it. Find the
speed u with which the queue length is growing if the average
distance between the centres of neighbouring cars in the queue
is l = 6 m?

Pay attention that the flow of cars is not stationary in the lab
frame of reference; hence, first you need to use the idea 1 to
make it stationary.

idea 40: In the case of problems involving moving objects
and moving medium (air, water), if the moving objects leave
trails, and you are asked to analyse a sketch (a photo), pay
attention to the fact that if the objects met, the meeting point
corresponds to an intersection point of the trails.

pr 29. Figure below is copied from an aerophoto: there are
two trains (depicted in red) which both travel with the speed of
v = 50 km/h along a railway (grey dashed line). Their engines
emit fume, the trails of which are depicted by black lines. De-
termine the direction and speed of wind (express the direction
of wind as a clock-wise rotation angle from north). You may
draw lines and measure distances using a ruler in the figure.

N

S

idea 41: Sometimes it is useful to include a time axis in addi-
tion to spatial coordinates and analyse graphs even if the prob-
lem’s text does not mention time dependence explicitly. Thus

12The continuity law plays an important role in physics, in general.
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we’ll be studying two-dimensional graphs for one-dimensional
problems and three-dimensional graphs for a planar motion.

Try to apply this idea to the following problem. Keep in mind
the following stereometric facts: 3 points always lie in a plane;
a straight line and one point determine a plane (unless the
point lies on the line).

pr 30. Points A, B and C lie on a straight line, so that B is
situated between A and C. Three bodies a, b and c start from
these points, moving at constant (but different) velocities. It
is known that i) if c was missing, a and b would collide and ii)
if b was missing, a and c would collide and it would happen
before than in i). Would b and c collide if a was missing?

In mathematics, for geometrical problems, there is a tech-
nique called auxiliary constructions: the solution of the prob-
lem can be significantly simplified if you draw an additional
line(s). While in physics, such constructions are less often used,
but in some cases auxiliary constructions are still useful (in
fact, idea 41 makes use of such construction). The following
idea represents a recipe for one more auxiliary construction.

idea 42: Sometimes it is useful to consider instead of a single
particle, a fictitious ensemble of auxiliary particles.

While the following problem can be solved via a brute force
approach, introducing an ensemble of auxiliary particles (re-
leased all over the wheel at the same time) simplifies your cal-
culations.

pr 31. A wheel with radius R is situated at height R from
the ground and is rotating at angular velocity Ω. At some point
A, a drop of water separates from the wheel and reaches the
ground at point B situated directly below the wheel’s axle (see
the figure). Find the falling time of the drop and the location
of point A (i.e. angle α).

R

B

a
α

In addition to the previous ones, there is an idea that helps
solving this problem. However, it is very non-standard, i.e.
there are almost no other problems where to use this idea. To
apply the idea elsewhere, it has to be formulated in a very gen-
eral form: More specifically for this question: imagine that at
the same time with the given drop, small droplets separated
from all the other points of the wheel as well. It is clear that
in a freely falling frame of reference, this set of droplets forms
a circle at all times; it should not be too difficult to find the
radius of that circle as a function of time. The first droplet
touching the ground is the one that we are interested in. We
can express time from the equation describing the condition of
touching (the height of the lowest point of the circle becomes
zero) - idea 10.

idea 43: For some problems, the main difficulty is understand-
ing, what is going on; once you understand, the calculations are
typically quite easy. Keep your mind calm: in physics compet-
itions, you are not asked to do something impossible: act as a
detective by investigating step-by-step what is going on, and
narrowing down possibilities by the exclusion method.

And here is a test case for the detective inside you!

pr 32. This photo of a rotating propeller of a plane is taken
with a phone camera. For such a camera, the image is scanned
line-by-line: at first, the leftmost column of image pixels is
read, followed by the second column of pixels, etc.
i) in which direction does the propeller rotate as seen by the
photographer (clockwise, or counterclockwise)?
ii) How many blades does the propeller have?
iii) How many rotations does the propeller make in one minute
if the total scanning time of this image was 1

8 seconds?

The first part of the next problem can be also solved using
the idea 43. The second part, however, becomes mathematic-
ally challenging; it would be much easier to solve it using the
following idea.

idea 44: Wave propagation problems can be often conveni-
ently analysed using the wave vectors: using orthogonal co-
ordinates (x, y, z), and time t, a sinusoidal wave a(x, y, z, t) can
be represented as sin(k⃗r⃗ − ωt), where the scalar product of the
wave vector k and radius vector r⃗ equals to k⃗r⃗ = kxx+kyy+kzz.
Here ω is the angular frequency of the wave and the wave’s
propagation speed v = ω/k13.

pr 33. i) There are two combs which are depicted in the
figure below. The figure renders the proportions of the combs
correctly; the scale of the figure is unknown. The grey comb
moves with a speed of v = 1 cm/s (the direction of its motion is
shown in the figure); the black comb is at rest. Find the speed
and direction of motion of the dark stripes.

13Sinusoidal waves are studied in more details in the booklet “Wave optics”.
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1 cm/s

dark stripe

ii) Now, we have the same situation (and the same question) as
before, except that the black comb is under a small angle α ≪ 1
with respect to the grey comb (for numerics, use α = 0.1 rad).

How to apply the idea 44 to the problem 33? Pay attention
to the following. Instead of a moving comb, we can take a
wave a(x, y, t) = sin(k⃗r⃗ − ωt); then, centres of the teeth corres-
pond to points where a(x, y, t) = 1. If we have two overlapping
combs, the “transparent regions” where the centres of the teeth
of both combs are at the same position can be found as the
points where a1(x, y, t)a2(x, y, t) = 1, and the regions where
the teeth are almost at the same position can be found as the
points where a1(x, y, t)a2(x, y, t) ≈ 1. Now we have a product
of two sinusoidal waves, so we can say that the moiré pattern
(this is how these dark stripes are called) is due to a nonlinear
interaction of waves. Further, in order to answer the question
about what is the propagation speed of the moiré pattern, we
need to decompose this product of sinusoids into a sum of si-
nusoids (for a sinusoid, we can calculate the speed as the ratio
of the angular frequency and the modulus of the wave vector).

idea 45: Well-known conservation laws are the ones of en-
ergy, momentum, and angular momentum14. However, some-
times additional quantities can be conserved (then, of course,
you need to show that it is conserved), which makes otherwise
mathematically very difficult problems easily solvable.

What can be hints that a non-trivial conservation law is valid
for a problem? Well, if you understand clearly that the diffi-
culty is mathematical (you understand what is going on, and
are able to write down the equations) and what you have at
hand are differential equation(s)15 then that might be the case.
For instance, let us consider the following problem.

pr 34. A dog is chasing a fox running at constant velocity
v along a straight line. The modulus of the dog’s velocity is
constant and also equal to v, but the vector v⃗ is always direc-
ted towards the fox. When the dog noticed the fox and started
chasing, the distance between them was L and at the first mo-
ment, their velocity vectors formed a right angle. What is the
minimal distance between them during the chase?

Here we can express the velocity components of the dog in
terms of its coordinates (using also the coordinates of the fox,
which are known functions of time); these are differential equa-
tions. Since you are not supposed to be able to solve differ-
ential equations for this booklet, this should not be the way
to go (furthermore, unless properly parametrized, c.f. idea 24,
these equations are actually not easy to solve). Note that at
physics competitions, you should always keep in mind, what

are those mathematical skills with which you are assumed to
be familiar with: when not certain which solving route to take,
this can help you narrowing down the options16. While extra
skills are sometimes useful, these can also easily lead you to a
wrong (mathematically unnecessarily complex or even unsolv-
able) path; therefore, apply your extra skills only if you can see
in your mind the whole path to the answer, i.e. when you are
sure that you will not run into mathematical difficulties.

Note that such nontrivial conservation laws can include all
these quantities which enter the differential equations, except
for those derivatives for which these equations are written. For
instance, here, the equations express velocities in terms of co-
ordinates, so velocities cannot be included. If the equations
were expressing accelerations in terms of velocities and coordin-
ates then both velocities and coordinates could enter the law
(but not the accelerations). The conservation law is typically
proved by showing that its time derivative is zero. For instance,
if our conservation law would be a sum of two distances, we
would need to show that the changing rates of those two dis-
tances are equal by modulus and have opposite signs.

7 CONCLUSION
Some of the ideas presented here (in particular, 1, 4, 5, 10, 14,
18, 19, 31, 37) are more universal than others. In any case,
they are all worth remembering. Note that it is always useful
to summarise the idea(s) in your mind after finding a solution
to a new problem; from time-to-time you may be able to come
up with some entirely new ideas! For further practice, here are
some additional problems based on aforementioned ideas.

pr 35. A boy is swimming in a fast-flowing river of width
L; the water speed is u = 2 m/s, and the boy can swim with
speed v = 1 m/s. While being at point A near one coast, he
wants to reach such a point B near the other coast which is
directly across the river (A⃗B ⊥ u⃗). Since the river is too fast,
he cannot avoid being carried downstream to a certain distance
a from point B; what is the smallest possible value of a which
he can achieve for the optimally chosen swimming direction?

pr 36. Rings O and O′ are slipping freely along vertical
fixed rails AB and A′B′ (see the figure); the distance between
the rails is b. Some unstretchable rope has been tied to ring O

and pulled through ring O′. The other end of the rope is fixed
to point A′. At the moment when ∠AOO′ = α, the ring O′ is
moving downwards at a constant velocity v. Find the velocity
and acceleration of the ring O at the same moment.

B

A

B

A

O

O

14These are typically not applicable to the kinematics problem.
15These are equations relating derivatives to coordinates (typically, velocities or accelerations as functions of coordinates and/or velocities and which

define the evolution of the system.
16Of course, such arguments are cannot be used for real-life problems.
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pr 37. A small ball is moving at velocity v0 along a smooth
horizontal surface and falls into a cylindrical vertical well at
point A, after which it starts bouncing elastically against the
wall and the smooth horizontal bottom. The well has depth
H and radius R; the angle between v⃗0 and the well’s diameter
drawn through point A is α. What condition between R, H,
v0 and α must be satisfied for the ball to exit from the well
again? Rotation of the ball can be neglected.

R

v~0

A

α

pr 38. A ball A lies on a wedge with angle α. It is also
tied to an unstretchable string, the other end of which is at-
tached to a vertical wall at point B (see the figure). What will
be the trajectory of the ball? What is its acceleration if the
acceleration of the wedge is a?

a

α

pr 39. A dog is chasing a fox running at constant velocity
v1 along a straight line. The modulus of the dog’s velocity is
constant and equal to v2, but the vector v⃗ is always directed
towards the fox. The distance between the animals was l at the
moment when their velocity vectors were perpendicular. What
was the acceleration of the dog at that moment?

pr 40. A spinner having the shape of a cone (height h, ra-
dius r) is moving along a smooth table and spinning rapidly.
What does its translational velocity v have to be in order to
avoid bumping against the edge of the table when it gets there?

v

h

r

pr 41. A uniform rope has been manufactured from an ex-
plosive material, combustion travels along the rope at velocity
v. The velocity of a shock wave in the air is c, with c < v. Along
which curve should the rope be laid out to make the shock wave
reach a given point at the same time from all points of the rope?
(Finding a quantitative formula for the shape requires solving
a very simple differential equation.)

pr 42. A hinged structure consists of rhombi with side
lengths l, 2l and 3l (see the figure). Point A3 is moving at
constant horizontal velocity v0. Find the velocities of points
A1, A2 and B2 at the moment when all angles of the structure
are equal to 90◦. Also, find the acceleration of point B2.

A A A

B

B

B

v
1 2 3

1

2

3

0

pr 43. Two motorboats simultaneously depart from two har-
bours (A and B) at distance l from one another, velocities of
the boats are v1 and v2, respectively. The angles between their
velocities and the line connecting A and B are α and β, re-
spectively. What is the minimum distance between the boats?

pr 44. A heavy disk of radius R is rolling downwards, un-
winding two strings in the process. The strings are attached to
the ceiling and always remain under tension during the motion.
What was the magnitude of velocity of the disk’s centre when
its angular velocity was ω and the angle between the strings
was α?

ω

α

pr 45. Two boards have been placed at right angles to one
another. Their line of touching is horizontal and one of them
(A) makes an angle α to the horizontal. An elastic ball is re-
leased at a point at distance a from plane A and b from B.
On the average, how many times does the ball bounce against
wall B for each time it bounces against wall A? Collisions are
absolutely elastic.

a

b

B

A

α

pr 46. One end of a string of a negligible mass has been at-
tached to the side of a cylinder, not far from the ground. The
cylinder itself has been fixed on smooth slippery horizontal sur-
face, with its axis vertical. The string has been wound k times
around the cylinder. The free end of the string has been tied
to a block, which is given a horizontal velocity v directed along
the radius vector drawn from the cylinder’s axis. After what
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time will the string be fully wound around the cylinder again,
this time the other way round? [This problem leads to a very
simple differential equation; if you don’t know how to solve it,
the following equality can be helpful: l dl

dt = 1
2

d(l2)
dt .]

v

r

pr 47. A heavy box is being pulled using two tractors. One
of these has velocity v1, the other v2, the angle between velo-
cities is α. What is the velocity of the box, if we assume that
the ropes are parallel to velocity vectors?

v1

v2

α

pr 48. A boy is running on a large field of ice with velocity
v = 5 m/s toward the north. The coefficient of friction between
his feet and the ice is µ = 0.1. Assume as a simplification that
the reaction force between the boy and the ice stays constant
(in reality it varies with every push, but the assumption is jus-
tified by the fact that the value averaged over one step stays
constant).
i) What is the minimum time necessary for him to change his
moving direction to point towards the east so that the final
speed is also v = 5 m/s?
i) What is the shape of the optimal trajectory called?

pr 49. A ball thrown with an initial speed v0 moves in a
homogeneous gravitational field of strength g; neglect the air
drag. The throwing point can be freely selected on the ground
level z = 0, and the launching angle can be adjusted as needed;
the aim is to hit the topmost point of a spherical building of
radius R (see fig.) with as small as possible initial speed v0
(prior hitting the target, bouncing off the roof is not allowed).
Sketch qualitatively the shape of the optimal trajectory of the
ball. What is the minimal launching speed vmin needed to hit
the topmost point of a spherical building of radius R?

x

z

sp
h

erical bui ld
in

g

pr 50. The figure represents a photo which was taken using
a very long exposure time (camera was pointing directly down).
What you can see is a trace of a blue lamp which burned con-
tinuously, but also flashed periodically with a red light (after
each t = 0.1 s. The lamp was fixed to the surface of a solid
disk, at the distance a = 4.5 cm from its symmetry axis. The

axis was vertical, and the disk slid and rotated freely on a ho-
rizontal smooth ice surface. What was the speed of the centre
of the disk? You can take measurements from the figure using
a ruler.

pr 51. There is a capital O and three cities A, B and C, con-
nected with the capital via roads 1, 2, and 3 as shown in the left
figure. Each road has length 2a. Two cars travel from one city
to another: they depart from their respective starting points
simultaneously, and travel with a constant speed v. The figure
on the right depicts the increasing rate of the distance between
the cars (negative values means that the distance decreases) as
measured by the GPS devices of the cars. The turns are taken
by the cars so fast that the GPS devices will not record the
behaviour during these periods.
i) Which cities were the starting and destination points of the
cars? Motivate your answer.
ii) What is the surface area between the vdist -graph and the
t-axis for the interval from t = 0 to t = a/v?
iii) Now let us consider a case when three cars (denoted by A,
B, and C) depart simultaneously from their cities (A, B, and
C, respectively) towards the capital; all the cars travel with a
constant speed v. Sketch the graphs for the distance changing
rate for the following car pairs: A − B and B − C.
iv) Suppose that now the GPS-devices are good enough to re-
cord the periods of taking the turns. Sketch a new appropriate
graph for the pair of cars B − C. The curvature of the turns is
small enough so that the cars can still keep theirs speed v.

a a

aa

a

a

A B

C

road 1

road 2

road 3

90o 90o

90o

90o

O

vdist

t
a
v

2a
v

0

2

v0-

v- 0

pr 52. Consider two rings with radius r as depicted in the
figure: the blue ring is at rest, and the yellow ring rotates
around the point O (which is one of the intersection points
of the two rings) with a constant angular speed ω. Find the
minimal and maximal speeds vmin and vmax of the other inter-
section point of the two rings.
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O

ω

pr 53. A moving bicycle is photographed using a relatively
long exposure time with a motionless camera. As a result, the
bike appears smudged on the photo; however, certain points of
certain spokes appear sharp. Determine the shape of the curve
upon which the sharp points of spokes lie.

pr 54. A lamp is attached to the edge of a disk, which
moves (slides) rotating on ice. The lamp emits light pulses:
the duration of each pulse is negligible, the interval between
two pulses is τ = 100 ms. The first pulse is of orange light,
the next one is blue, followed by red, green, yellow, and again
orange (the process starts repeating periodically). The motion
of the disk is photographed using so long exposure time that
exactly four pulses are recorded on the photo (see figure). Due
to the shortness of the pulses and small size of the lamp, each
pulse corresponds to a coloured dot on the photo. The colors
of the dots are provided with the corresponding lettering: o —
orange, b — blue, r —red, g — green, and y — yellow). The
friction forces acting on the disk can be neglected.

i) Mark on the figure by numbers (1–4) the order of the pulses
(dots). Motivate your answer. What can be said about the
value of the exposure time?

ii) Using the provided figure, find the radius of the disk R, the
velocity of the center of the disk v and the angular velocity
ω (it is known that ω < 30 rad/s). The scale of the figure is
provided by the image of a line of length l = 10 cm;

b

r

g

y
10 cm

pr 55. The photo depicts a jet of water, together with back-
ground grid. The pitch of the grid equals to the diameter of
the jet at the exit from the horizontal pipe. The water flow
rate is constant in time, and if a vessel of volume V = 150 cm3

is used to collect the outflowing water, it is filled during the
time period of t = 5 min. Find the diameter of the jet at the
exit of the pipe.

pr 56. On a wide river, two boats move with constant velo-
cities. The velocity of the water in the river is constant across
the whole area depicted in the figure, and parallel to the coast-
line. The figure is based on a photo which was taken from air,
the camera being directed straight down. The positions of the
boats are marked with a square and a triangle, and the posi-
tions of litter fallen from the boats — with pentagrams. One
of the boats departed from the point A; it is known that the
boats did meet with each other at a certain moment. From
which coastal point did the other boat depart? Solve the prob-
lem using geometrical constructions.

A

pr 57. Let us consider the merger of two traffic lanes A

and B into a single lane C, see figure. During a rush hour, all
the lanes are filled with cars; the average distance between the
cars can be assumed to be equal for all the lanes. The lengths
of the lanes A, B, and C is respectively equal to LA = 1 km,
LB = 3 km, and LC = 2 km. The average speed of cars on the
lane A is vA = 3 km/h; and the travel time of a car on the
lane B is tB = 36 min. How long will it take for a car to travel
from the beginning of the lane A to the end of the lane C?

A

B

A

B
C C

pr 58. On a windless rainy day, a standing man gets wet
during t = 2 min; if he runs with the speed v2 = 18 km/h, he
gets wet during t2 = 0.5 min. How long will it take for him to
get wet when walking with the speed v1 = 6 km/h? Assume
that the body shape of a man can be approximated (a) with
a vertical rectangular prism; (b) with a sphere. Here “getting
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wet” is defined as receiving a certain amount of water.

pr 59. A photographer took a photo of a waterfall. Due to
the reflected sunlight, the droplet were seen as speckles. Owing
to the fast falling speed of the droplets, the speckles created
bright stripes on the photo. When the camera was in a normal
“landscape” position, the length of the stripes was l1 = 120
pixels; when the camera was rotated around the optical axis of
the lens by 180◦ into a “head-down” position, the length of the
stripes was l2 = 200 pixels. What was the length of the stripes
when the camera was in a “portrait” position, i.e. rotated by
90◦? Assume that the exposure time was equal in all three
cases. If there are several possibilities, give all the possible
answers.

Hint. The main components of the camera are the lens which
creates an image on the sensor, and the shutter. The purpose
of the shutter is to limit the time during which the sensor is ex-
posed to the light to a short (and appropriate) period of time:
normally, it covers the sensor, and the image created by the
lens falls on the sensor only when the shutter is opened. The
shutter is made of two curtains: at the beginning, the first cur-
tain covers the sensor; when a photo is taken, it moves down
with a certain speed v opening the sensor; once the sensor has
been opened for the required period of time, the second curtain
moves down with the same speed v, covering again the sensor.
In order to achieve very short exposure times, both curtains
move together, creating a narrow moving slit through which
the light can pass through to reach the sensor.

pr 60. If a stone is thrown into a pond, a circular wave is
created which expands in time. The following figure depicts
the propagation of such a wave: different circles correspond
to the position of the wave crest at different moments of time;
the underlying snapshots have been taken with a regular (but
unknown) interval.

L

Note that the wave speed depends on the wavelength, and here,

the effective wavelength grows in time: at the beginning, the
wavelength is of the order of the circle radius, but later, it tends
towards a value which is of the order of the water depth h. It
turns out that at the beginning, the wavecrest moves with ac-
celeration a = g/π, where g is the free fall acceleration; later, it
tends towards the value v∞ =

√
hg. Based on this knowledge,

estimate the depth of the pond h assuming that it is constant
everywhere; express your answer in terms of the length scale L

provided in the figure. You can take measurements from the
figure using a ruler.

pr 61. A motorboat approaches a straight coastline perpen-
dicularly, and at a distance L starts turning back by drawing a
half-circle of radius R; later it departs perpendicularly to the
coastline. The speed of the boat is constant and equal to v,
the water wave speed can be assumed to be constant and equal
to u (with u < v). How long will it take for the waves of the
wake behind the boat to reach the coast (as measured from the
moment when the boat starts turning)?

pr 62. On a wide river, a motorboat moves with a con-
stant speed v = 7 m/s from village A to village B over the
river. When answering the following questions you may take
measurements from the figure below depicting waves behind
the boat. What is the water speed in the river, and what is
the water depth h? Note: wave speed in shallow water17 is
w =

√
gh, where g = 9.81 m/s2.

A B

pr 63. Provided sketches (a) and (b) are made on the basis
of satellite images, preserving proportions. They represent
tractors, together with their smoke trails. The tractors were
moving along the roads in the direction indicated by the ar-
rows. The velocity of all the tractors was v0 = 30 km/h. For
sketch (a), the direction of wind is indicated by another arrow.
When solving the problem, you may draw lines and measure
distances using a ruler.
i) Using the provided sketch, find the wind speed for case (a).
ii) Using the provided sketch, find the wind speed for case (b).

(a)

(b)

17when water depth is noticeably smaller than the wavelength
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pr 64. The following snapshot (a larger version is on an
extra sheet) depicts two balls that were thrown simultaneously
and with the same initial speed, but in different directions from
point P . What was the initial speed? Use g = 9.8 m/s2.

pr 65. A boat travelled from its home port to an island
at the distance of l = 4 km directly towards south. Its tra-
jectory consisted of three straight segments the directions of
which were not recorded. During each of the segments, the boat
maintained a constant velocity; however, a different speed was
maintained for diffe- rent segments. During the travel time,
wind speed and direction was measured from the boat. The
travel time on the first segment was t1 = 3 min, the measured
wind speed was v1 = 15 m/s and the wind blew directly from
east. The travel time on the first segment was t2 = 1.5 min, the
measured wind speed was v2 = 10 m/s and the wind blew dir-
ectly from southeast. The travel time on the first segment was
t3 = 1.5 min, the measured wind speed was v3 = 5 m/s and the
wind blew directly from southwest. What was the wind speed?
It is known that the wind speed and direction were constant
during all the travel time.

pr 66. There is a long chute of constant slope angle along
which balls can slide frictionlessly (the chute is narrow so that
the motion of the balls is essentially one-dimensional). Let
there be N identical perfectly elastic balls sliding on that chute.
The total number of pair-wise collisions between the balls in the
chute depends on their initial velocities and positions. What
is the largest possible number of collisions? (If you don’t know
how will move two absolutely elastic balls after a collision, check
the hints section.)

8 HINTS
1. In the water’s frame of reference, it is clear that departing

from the barge and returning to it took exactly the same
amount of time.

2. In the frame of the red plane, the blue plane moves along
a line s which forms an angle α = arctan 3

4 with the hori-
zontal dashed line in the figure. The distance of the red
plane from this line is most conveniently found considering

two similar right triangles, the larger of which is formed
by the line s, and the two dashed lines in the figure.

3. Use the frame which moves with the speed v
2 to find the

horizontal component of the intersection point’s velocity.
Now, in the lab frame, we know the direction of this ve-
locity, as well as the horizontal projection; apply the idea
4.

4. Since the ascending speed is constant, it is sufficient to
calculate it for a single position of the balloon — when its
height is small and hence, the horizontal velocity is almost
zero; apply the idea 5. For t = 7 min, the angular ascend-
ing speed is zero, hence the balloon needs to move along
the line connecting the balloon and the observation point;
apply the idea 4.

5. In the boards frame of reference, there is only horizontal
force (the friction force) has a constant direction, antipar-
allel to the velocity.

6. According to the idea 7, we use the conveyor’s frame, but
as we are asked about the speed in lab frame, we need
to switch back to the lab frame. In the conveyor’s frame,
the velocity vector becomes shorter while preserving the
direction, i.e. can be represented as w⃗ = kw⃗0, where its
initial value w⃗0 = v⃗0 − u⃗0 and the factor k takes numerical
values from 0 to 1. Hence, the velocity in the lab frame
v⃗ = u⃗0 + kw⃗0: this is a vector connecting the right angle
of the right triangle defined by its catheti u⃗0 and v⃗0 with a
point on the hypotenuse; the specific position of this point
depends on the value of the factor k (which is a function
of time).

7. Express the lateral displacement of the ball as the sum of
two components: lateral displacement in the air’s frame of
reference (a trigonometrical task; this does not depend on
t), and the lateral displacement of the moving frame.

8. Algebraic approach: take one of the axes (say x) to be
perpendicular to the racket’s plane and the other one
(y) parallel to it. Absence of rotation means that the y-
components of the ball’s and racket’s velocities are equal,
uy = vy, and there is no parallel force acting on the ball,
hence v ′

y = vy. Using idea 13 we find that v ′
x = −vx + 2ux.

Applying idea 15 to the vectors v⃗ and v⃗ ′ gives us an equa-
tion for finding ux; apply Pythagoras’ theorem obtain |u⃗|.
To find angle β, express tan β = uy/ux.

Geometric approach: draw a right trapezoid as follows:
we decompose v⃗ into parallel and perpendicular compon-
ents, v⃗ = v⃗x + v⃗y; let us mark points A, B and C so that
A⃗B = v⃗x and B⃗C = v⃗y (then, A⃗C = v⃗). Next we mark
points D, E and F so that C⃗D = v⃗ ′

y = v⃗y, D⃗E = −v⃗x,
and E⃗F = 2u⃗x; then, C⃗F = v⃗ ′

y − v⃗x + 2u⃗x ≡ v⃗ ′ and
A⃗F = 2v⃗y + 2u⃗x ≡ 2u⃗. Due to the problem conditions,
∠ACF = 90◦. Let us also mark point G as the centre of
AF ; then, GC is both the median of the right trapezoid
ABDF (and hence, parallel to AB and the x-axis), and
the median of the triangle ACF . What is left to do, is ex-
pressing the hypotenuse of △ACF in terms of v = |AC|,
and apply the idea 16.
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9. Use the frame where the mirror is at rest: the source S

rotates with angular velocity −ω. Now go back to the lab
frame and find the angular velocity of the image in that
frame.

10. The area under the graph, from t = 0 until the given mo-
ment, gives the displacement, and regions below the t-axis
make negative contributions. Hence, if a certain moment
t corresponds to a maximal displacement then v(t) = 0
(otherwise, the displacement could be increased somewhat
by making t slightly smaller or larger, depending on the
sign of v(t). (Alternatively, we can say that extrema cor-
respond to zero derivative, and the derivative of ∆x is
v.) The same arguments lead us to the conclusion that
for slightly smaller t-values we must have positive v, and
for slightly larger t-values — negative v. Hence, the can-
didates are t = 4.7 s, t = 7 s, t = 12.5 s, and t = 18.3 s.
Calculate the surface areas to see, which of them maxim-
izes the displacement.

11. Let us divide the displacement into small pieces, s =
∑

∆s,
where ∆s = v∆t. If the function v(t) were known, the
last formula would have been completed our task, because∑

v(t)∆t is the sum of rectangles making up the area un-
der the v − t-graph . However, the acceleration is given
to us as a function of v, hence we need to substitute ∆t

with ∆v. While trying to do that, we can introduce the
acceleration (which is given to as a function of v):

∆t = ∆v · ∆t

∆v
= ∆v

∆v/∆t
= ∆v

a
.

This result serves us perfectly well:

s =
∑

v∆t =
∑ v

a
∆v →

∫
v

a(v)
dv,

i.e. the displacement equals to the surface area under a
graph which depicts v

a(v) as a function of v.
12. Use the frame of one of the sliding balls — according to

the acceleration addition rule, the other one moves with a
constant horizontal acceleration. Apply the idea 2 to find
the position where the distance is minimal. Express the
answer in terms of the distance AB; apply the idea 10 for
finding the distance AB.

13. If the axis x is parallel to the plane (and points down-
wards), the ball performs a free fall along x-axis, the accel-
eration being equal g sin α; if the axis y is perpendicular to
the plane, the ball bounces along the y-axis up and down,
with the free fall acceleration g cos α.

14. Use perpendicular coordinates so that the x-axis is along
the contact line of the two surfaces and y-axis lays on the
inclined surface; then, motion in the x-direction is inde-
pendent of the motion in y − z-plane. Due to the idea
21, the speed remains constant throughout the transition
from one plane to the other. Use fact 3 in conjunction
with the provided graph to figure out the value of gy, the
projection of the free fall acceleration to the y-axis. Now,
since we know the full free fall acceleration g = 9.8 m/s2,
the relationship gy = g sin α allows us to find the angle α.

15. According to the first method, we use the frame which
co-rotates with the turtles, so that in the new frame, the
turtles move radially towards the centre; when applying

the rule of velocity addition, for each of the turtles we
need to use the local velocity vector of the rotating frame
at the location of the particular turtle. According to the
second method, at each moment, let us project the velocit-
ies of two turtles on the straight line connecting them —
that way we can find the rate of decrease in the distance
between two turtles.

16. Write down the relationship between small increments:
dk = v · dt/(L + ut); the answer is obtained upon integra-
tion of the left- and right-hand parts of this equality.

17. Apparently the boy will need to arrive to the coast OM

at the right angle, c.f. idea 2. Now we can apply the idea
25 together with the fact 5 to the refraction of his traject-
ory at the coast OP to find the angle at which he needs to
arrive to the coast OP (the answers are expressed straight-
forwardly in terms of this angle).

18. First approach: use the water’s frame of reference, because
then the swimming speed is independent of the swimming
direction. In that frame, the boy moves on the coast with
the speed equal to v + w. It is clear that the boy needs to
start immediately swimming, i.e. it doesn’t matter weather
the point A is moving or motionless in the new frame. It
is also clear that if we have found the fastest way of reach-
ing the point C, the same trajectory would give us the
fastest way of reaching any other upstream point on the
same coast; in particular, we can take a point C ′ which
moves together with the water (is motionless in the water’s
frame), and the optimal trajectory would still remain the
same. With these modifications, we have a problem where
we can apply the Fermat’ principle; the resulting geomet-
rical optics problem is essentially the problem of finding
the angle of total internal reflection. For the second ap-
proach, once the front meets the point A, the front forms
a cathetus of a right triangle APQ, where Q is the point
where the front meets the riverbank, and P is the position
of that Huygens source on the riverbank which creates the
circular wave meeting the point A. Notice that the point
P is the point where the boy needs to start swimming in
the water’s frame of reference, and is displaced by wT from
the corresponding point in the lab frame.

19. Once you write down trajectory parametrically, x = x(t)
and z = z(t), time t can be eliminated; as a result, you
obtain an equation relating x, y, and the shooting angle α

to each other, which we consider as an equation for find-
ing angle α. The angle enters into this equation via two
terms, one containing tan α, and the other — cos−2 α. In
order to solve such equations, one possibility is to express
all trigonometric functions via a single one. It is possible
to express tan α via cos α, but that involves a square root,
which is inconvenient. Meanwhile, cos−2 α can be nicely
expressed in terms of tan α, and so, this is the way to go;
as a result, you’ll obtain a quadratic equation for tan α.

20. Use the fact that all vertical rays are reflected by the range
boundary so that they will pass through the focus. It is
enough to find the intersection point of two rays. Take one
ray at x = 0, and the other one such that it will hit the
range boundary at the level z = 0 (we know the tangent
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of the range boundary at that point due to the fact 8).

21. Step 1, proof by contradiction: if the trajectory doesn’t
touch neither of the edges, the throwing speed can obvi-
ously be reduced slightly while keeping the angle constant.
If it touches only one edge, let it be the farther edge, the
boy can step slightly forward so that now the trajectory
doesn’t touch neither of the edges. Step 2: from the law
v(z)2 − 2gz = cosnt, we conclude that the speed at the
height z = c [denoted as v(c)] is a uniquely defined growing
function of the speed at the ground level v(0): if the speed
v(0) is minimal then v(c) is also minimal. Step 3, brute
force approach: find the minimal throwing speed from the
right edge F of the roof by requiring that the other edge
with coordinates P = (a−c,

√
b2 − (a − c)2 belongs to the

parabola found in problem 19. Geometric approach (idea
30: according to the idea 28 (keep in mind the facts 6 and
7), when throwing optimally from the point F to point P ,
the point P belongs to the envelope-parabola (which separ-
ates the region where the targets can be hit with the given
speed, see idea 28), and F is its focus; let the respective
minimal throwing speed be u [recall that this is the speed
at the altitude of the point F , i.e. u = v(c)]. According
to the idea 28, when throwing from F , any point of the
envelope-parabola can be reached with the same speed u

if we adjust the throwing angle accordingly; in order to
reach the tip Q of the envelope-parabola we need to throw
straight up. Now it would be a trivial task to find the
throwing speed u from the energy conservation law if the
height h = |FQ| of the envelope-parabola were known. To
obtain h, we use the property of a parabola (see fact 9):
the sum of the distance of a point from the focus and the
point’s height is constant: b + (a − b) = h + h.

22. Due to the idea 28, together with facts 6 ,7, and 9, a
vertical ray directed at the target is reflected by the pro-
jectile’s trajectory to the focus, i.e. to the cannon. When
making use of the idea 26 we see that this projectile’s tra-
jectory is also optimal for shooting the cannon’s position
from the location of the target; hence, the projectile’s tra-
jectory reflects a vertical ray directed to the cannon to-
wards the target. If we combine these two observations we
see that a vertical ray directed to the cannon is rotated
after two reflections from the trajectory by 180◦, which
means that the reflecting surfaces must have been perpen-
dicular to each other (showing this mathematically is left
to the reader as a simple geometrical task).

For the alternative solution, we consider the motion of two
projectiles of initial velocities v⃗ and v⃗′ = v⃗ +∆v⃗ as sugges-
ted above, i.e. with |∆v⃗| ≪ |v⃗|, ∆v⃗ ⊥ v⃗ and |v⃗| ≈ |v⃗′|. In
the free-falling frame, they depart at a constant velocity
∆v⃗, the relative velocity which was given at the beginning.
Hence, at the destination, the displacement vector between
the projectiles ∆r⃗ = t∆v⃗ (t being the flight time) which is
perpendicular to the initial velocity v⃗. On the other hand,
we can apply the fact 10 by considering the dependence of
the x-coordinate of the projectile at the target’s altitude
as a function of the launching angle. Hence, we conclude

that while the first projectile hits the target exactly, the
other one must also come very close to it (at the target’s
level, v⃗ gives the optimal shooting angle, and hence, v⃗′ is
nearly optimal): if one of them is at the target, the other
one will be there very soon18. Recall that when the first
projectile is at the target, the other one is displaced by
t∆v⃗ from it, i.e. its current velocity u⃗ ∥ t∆v⃗ ⊥ v⃗.

23. Notice that all those points which have the same speed
lie on the same distance from the instantaneous rotation
center.

24. Equate the acceleration calculated in two inertial frames:
in the lab frame, and in the frame of the wheel’s centre.

25. a) First we use the idea 35: when applying it to the left
rod we conclude that the joint’s velocity is vertical, and
when applying the idea to the right rod we conclude that
the modulus is v. Now we can apply the fact 13 to cal-
culate the horizontal projection of the joint’s acceleration.
In order to use the idea 34, we need to know the direction
of the acceleration, as well. This knowledge is obtained
if we switch to the frame moving up with constant speed
v: the joint’s speed is zero and hence, the centripetal ac-
celeration is zero. b) Notice that in the frame moving
up with constant speed v, the question b) is the same as
mirror-reflected question a).

26. First method: find the instantaneous centre of rotation by
figuring out the direction of velocities of for two points of
the cylinder: first, point A where the rope meets the cylin-
der (notice that the velocity of A as a rope’s point equals
to the velocity of A as a cylinder’s point, and apply the
idea 35 to the rope), and point B where the cylinder meets
the plate (what is the vertical component of the velocity
of the cylinder’s point B?).

Second method: make a drawing with two close positions
of the cylinder and rope: let us mark on the left position
of the rope a point P where the rope meets the cylinder,
and on its right position — point P ′ which is at the same
height as point P . Let us denote the point where the rope
is fixed to the wall by Q. Then, the rope segment QP ′

consists of a straight segment QP ′′ and a curved segment
P ′′P ′. However, since the displacement of the cylinder
PP ′ is small, the length of the curve QP ′′P ′ has almost
the same length as the straight line QP ′. While the actual
unwound length |QP | − |QP ′′| is contributed by two rota-
tions (rotation of the cylinder and rotation of the rope),
the length difference |QP | − |QP ′| is contributed only by
the cylinders rotation (the point P ′ is at the same relative
position on the cylinder as the point P ), and is, hence,
equal to ωR∆t. On the other hand, we can express this
length trigonometrically in terms of the cylinder’s displace-
ment PP ′.

27. Let us take y to be the coordinate of the upper end
and x that of the lower end. Then the rod has length
l2 = x2 + y2; l is constant, so its derivative must be zero.
Let us take the time derivative of the whole expression,
using the chain rule of differentiation known from math-

18More precisely, the closest distance will be quadratically small; meanwhile, the displacement vector t∆v⃗ is linearly small, i.e. much larger.
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ematics: 0 = xẋ + yẏ = xu + yv (a dot on top of a symbol
means its time derivative). From that, we can express
u = −vy/x = −v tan α.

28. Go to the frame which moves with speed u and where
boundary between the queue and moving cars is station-
ary; equate the flux of cars (how many cars is passing in a
unit time) in the region of queue to its value in the region
of moving cars.

29. The intersection point P of two trails corresponds to the
moment when the heads of the trains met: it was carried
by wind to where it currently is. So, based on the speeds of
trains we find their meeting point Q; since the speeds are
equal, this is the middle point of the segment AB connect-
ing the current positions of the train heads. The segment
AB was covered during the given time interval at the speed
2v = 100 km/h; this value can be used as a scale for find-
ing the wind speed based on the length of segment QP

(you need to measure |AB| and |PQ|).

30. First we conclude, based on the two collisions, that all
the bodies move on the same plane, henceforth the (x, y)-
plane. According to the idea 41, we plot the trajectories
of the bodies in a 3D plot (as lines x = xa(t), y = ya(t);
x = xb(t), y = yb(t); x = xc(t), y = yc(t). Collisions cor-
respond to intersections of these lines, and intersection of
two lines means that the two lines are coplanar (lie on a
single plane).

31. In the free-falling frame, all the particles move with con-
stant velocities; each particle had initial velocity equal to
the wheel’s velocity at the releasing point, i.e. tangential
to the wheel and equal by modulus to ΩR. Hence the en-
semble of particle expands as a circle, the radius of which
can be calculated from the Pythagorean theorem. In the
lab frame, the centre of the circle performs a free fall. A
droplet reaching the point A corresponds to the expanding
circle touching the ground.

32. Useful observations: each column of pixels is obtained very
fast, essentially simultaneously; so, each column of pixels
represents a vertical cut of the real object at the respective
position for a certain moment of time. However, different
columns correspond to different time. Each vertical curved
shape on the photo is a sequence of vertical cuts and hence
must correspond to the same blade of the propeller. At the
upper half of the photo, the scanning ling moves towards
the motion of blades, and none of the blades is missed:
if we number the blades by 1, 2 and 3 then the blade se-
quence at the upper half must be 1, 2, 3, 1, 2, . . . . In lower
half of the photo, the scanning line and blades move in the
same direction, and the blades are faster, hence here the
sequence is 3, 2, 1, 3 . . . . The scanning line moves appar-
ently with a constant speed, hence the horizontal position
on the photo can be used to measure the time.

33. i) While the grey combs moves by half of the teeth pitch,
a dark stripe moves to where currently there is a white
stripe, i.e. by half of the dark stripe distance. Hence, the
stripe speed is as many times faster as many grey teeth

can be counted per one stripe period.
ii) The product of two waves can be expanded as a =
sin(k⃗1r⃗ − ωt) sin(k⃗2r⃗) = 1

2 {cos[(k⃗1 − k⃗2)r⃗ − ωt] − cos[(k⃗1 +
k⃗2)r⃗ − ωt]}. The bands where a ≈ 1 are where the “slow”
sinusoid is close to one, cos[(k⃗1 − k⃗2)r⃗ − ωt] ≈ 1; this is a
sinusoidal wave which moves with speed u = ω/|⃗k1 − k⃗2|.

34. Let us consider the evolution of the vector r⃗ pointing from
the dog to the fox; calculate the changing rates of the mod-
ulus |r⃗|, and of rx, the projection of r⃗ to the x-axis (taken
parallel to the fox’s velocity). Is it possible to make such
a linear combination of rx and |r⃗| that its time derivative
would be zero? If yes, we would obtain a new conserva-
tion law which could be used to obtain immediately the
answer.

35. Use the vector addition rule to draw a rectangle of velocit-
ies u⃗ + v⃗ = w⃗, where w⃗ is the velocity of the boy relative
to the coast. Apply the idea 2: if we fix the position of
the vector u⃗ and draw the possible triangles for different
swimming directions, we’ll see that the possible positions
of the endpoint of v⃗ lie on a circle. Now it is not difficult
to conclude that the optimal swimming corresponds to v⃗

being tangent to the circle.
36. Introduce coordinates x (the vertical position of the ring

O) and y (the vertical position of the ring O′), with the
origins at A and A′, respectively. Also introduce the rope
length L (to be eliminated later from the answer). Relate
these quantities to each other via Pythagorean theorem
(keep things squared to avoid square roots for easier ma-
nipulation) and apply the idea 38.

37. Apply idea 20: vertical motion is independent from the
motion in the horizontal plane. The ball can escape the
well if it hits the upper rim of the well. This will happen if
the period of vertical motion relates to the time between
two collisions with the well’s walls for the horizontal mo-
tion as a rational number (ratio of two integers).

38. Use the idea 1: switch to the frame of the wedge; determ-
ine there the acceleration of the ball; apply the rule for
the addition of accelerations to find the acceleration of
the ball in the lab frame. Once knowing the acceleration
and initial velocity, the trajectory can be also found easily.

39. Apply the fact 12 to calculate the acceleration — the time
derivative of the velocity vector. The angular speed of the
rotation of the velocity vector can be found using the idea
37.

40. Apply the idea 1: use the cone’s (free-falling) frame where
the table’s corner moves upwards with the acceleration g.

41. Apply the idea 24 (work with polar coordinates r and φ).
Express the squared curve length increment dl2 via the
squared increments dφ2 and dr2 (use the Pythagorean the-
orem); and relate dr2 to dl2 via the propagation speeds.
Note that differential equations in the form kdx = xdy

(where k is a constant) can be solved by separating vari-
ables, i.e. bringing all the x-s and y-s to the respective
sides of equality (here, k dx

x = dy), and integrating left-
hand right-hand-sides of the equality (which leads here to

19It is nicer to keep ln(x/x0) instead of ln(x) − ln(x0) as otherwise it would be difficult to check if the dimensionalities of the expressions are OK.
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k ln(x/x0) = y, where x0 is a constant emerging when
taking the indefinite integrals19.

42. Denoting the diagonal length via d, relate the distance of
A3 from the wall to d; express the time derivative of d

in terms of v (c.f. idea 38 on Pg 12), and use this result
to find the speeds of A1 and A2. Use the idea 1 (switch
to the frame of the centre of the largest rhombus) to find
the direction of the acceleration of B2. Apply the idea 34
to deduce the modulus of the acceleration: switch to the
frame where A2 (or A3) is at rest and the point B3 moves
along a circle, and determine the centripetal acceleration

— the projection of the whole acceleration to the leg A2B3.
43. Apply the ideas 1 (use the frame of one of the boats), and

the idea 2. You need the angle between the line AB and
the relative velocity; note that the tangent of that angle
can be expressed quite easily.

44. Apply the idea 33: you can find the direction of velocities
for those two points of disc where the ropes are tangent to
the disc. Indeed, keep in mind the idea 35 and notice that
the upper ends of the ropes have zero velocities (where in
contact, the rope and disc points have equal velocities).

45. Apply the idea 20: the motion along each of the boards are
independent. Use the fact 4 (the free fall acceleration com-
ponents will be g cos α and g sin α); calculate the jumping
periods for each of the motions.

46. Apply the idea 21 to conclude that the speed of the block
remains constant. Express the angular speed ω of the un-
wound part of the rope in terms of its current length l; note
that ω is also equal to the angular speed of the point P

where the rope is tangent to the cylinder; relate this speed
to the rate at which the rope is unwound, dl

dt . Apply the
provided formula to conclude that d(l2)

dt remains constant
during unwinding and winding. Don’t forget that there
is also a period when the rope is fully unwound and the
block draws a semicircle.

47. Apply idea 35 to determine the projections of the box’s
velocity v⃗ to the directions of the ropes. Using the idea 16
one can conclude that the quadrilateral formed by the vec-
tor v⃗ as a diagonal and the projections of v⃗ as its two sides
is a cyclic one whereas v⃗ is the diameter of its circumcircle.
Apply the cosine theorem to determine the length of the
other diagonal, and the sine theorem to determine |v⃗|, the
diameter of the circumcircle.

48. First approach: apply the idea 1: use the inertial frame
which moves with the initial velocity of the boy; while the
acceleration of the boy is fixed by modulus, the direction
can be adjusted as needed. Since in this frame, the ini-
tial velocity is zero, the optimizations task becomes quite
trivial. Second approach: study the evolution of the boy’s
velocity vector v⃗ in (vx, vy)-plane: acceleration a⃗ = dv⃗

dt is
constant by modulus, hence the endpoint of v⃗ moves with
a constant speed |⃗a| from its initial position (0, v) to the
final position (v, 0).

49. There are at least three different solutions; the simplest
one is based on the idea 30, and is quite similar to the geo-
metric solution of the problem 21. All the solutions start

in the same way as the ones of problem 30 by (a) showing
that the optimal trajectory needs to touch the sphere at
a certain point P before hitting the sphere at its top T ,
and (b) applying the idea 26 to consider throwing from T

instead of throwing from an unknown point at the ground
level.
The first method makes use of the geometric properties of
the envelope parabola (see ideas 28 and 30, and facts 6, 7
and 9): |TP | + |PA| = 2|TQ| + R, where PA is a vertical
line, A lies at the same height as the sphere’s centre O,
and Q is the tip of the envelope parabola. As the shoot-
ing speed is defined by |TQ| (see the hints of problem 21
for more details), we only need calculate |TP | and |PA|.
Since TP is a line coming from the focus, it is reflected
by the parabola at P to a vertical line; since parabola is
tangent to the sphere, it is also reflected by the sphere to
a vertical line which means that ∠TPO = ∠OPA. Since
TO ∥ PA we can conclude that ∠TOP = ∠OPA, and as
△TOP is isosceles, ∠OTP = ∠TPO; together with equal-
ity ∠TPO + ∠TOP + ∠OTP = 180◦ we conclude that
∠OTP = 60◦, which gives us immediately |TP | = R and
|PA| = R

2 .
The second method makes use of the expression for the
envelope parabola (idea 28) with a focus at T : write down
equation for finding the intersection points of the sphere
and the parabola — this will be a biquadratic equation.
According to the fact 7, in the optimal case the parabolic
trajectory, envelope parabola, and sphere are tangent to
each other at the same point; hence, at this optimal case
there are exactly two symmetric solutions to the biquad-
ratic equation (if the launching speed is smaller than op-
timal then there are 4 solutions, and if it is larger then
there are no solutions). Apply idea 29 to find the speed.
The third solution makes use of the result of the problem
22 and idea 24: if we use φ = ∠TOP as the parameter, we
know that from the point T , the optimal shooting angle
must be equal to 90◦ − φ. Hence, we can write down the
conditions that the trajectory goes through P and the fi-
nal, and initial and final velocities are perpendicular (idea
15). This gives us three equations containing φ, touching
time t, and initial speed v as unknowns. It appears that
this system of equations simplifies nicely.

50. It can be seen that the red dots are repeated at the same
places of the blue cycloid for each of its periods, and
there are three dots per period; according to the idea 6,
we’ll make use of this fact (in generic case it considerably
longer calculations would be needed) to conclude that the
disk’s rotation period is three times longer than the flash-
ing period, i.e. 0.3 s. The distance travelled corresponds to
the period length of ca 4 grid units; the value of a grid unit
can be found by noticing that the cycloid height equals to
2a.

51. i) vdist is always negative, hence the overall, the distance
decreased, hence the cars must have started from different
cities. O could not have been the starting point of a car
because in that case the final distance would have been the
same or larger than at the beginning. Now we just need
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to consider three possibilities, out of which two are easily
excluded based on the behaviour for 0 < t < a

v .
ii) Use the idea 18.
iii) and iv) Calculate relative velocity according to the vec-
tor subtraction rule and project it to the line connecting
the cars for different positions on their path.

52. Approach the same way as in the case of problem 3: use
the frame which rotates with the angular speed ω

2 to obtain
the angular speed of the line OP , P being the intersection
point. Consider isosceles triangle QOP (where Q is the
centre of the blue ring) to obtain the angular speed of the
line QP .

53. Note that for a spike, such a point P appears sharp for
which velocity is parallel to the spike. Apply the idea 33:
the instantaneous rotation centre is the lowest point G of
the wheel (as it is contact with the ground and has thus
zero speed). Thus, GP must be perpendicular to the spike;
recall now the idea 16.

54. i) Use the fact that orange dot is missing; the exposure
time must be appropriate for capturing exactly four dots.
ii) Use the idea 1: in the frame of the disk’s centre, the
displacement vector d⃗ between neighbouring flashes has
always the same modulus d = 2R sin(ωτ/2), and neigh-
bouring displacement vectors are always rotated by the
same angle ωτ . In the lab frame, additional constant dis-
placement vector v⃗τ is to be added due to the translational
motion of the frame: d⃗′ = d⃗ + v⃗τ . Because of that, if we
bring all the displacement vectors to such positions that
their starting points coincide, the endpoints will lie on a
circle of radius d. So, we redraw the displacement vectors
b⃗r, r⃗g, and g⃗y, and draw the circumcircle of the triangle
formed by the endpoints of the vectors; from that figure
we can measure both the rotation angle ωτ (for finding
ω), constant displacement a = vτ (for finding v), and the
circle’s radius d = 2R sin(ωτ/2) (for finding R).

55. For the parabolic shape y = kx2 of the jet, the factor k can
be determined from the figure; this relates the unknown
grid unit d, the initial speed v of the jet, and g = 9.81 m/s2

to each other. The idea 39 relates the flow rate π
4 d2v to the

vessel filling rate; we have two equations and two unknown
parameters, so the system of equations can be solved.

56. Using the idea 1 we can conclude that all the litter must lie
on the same line with that boat from which these fell: this
allows us to conclude, which litter corresponds to which
boat. Using the idea 40 we mark the point where the boats
met — the intersection point of two trails. The distance of
the boats from that point is proportional to the speed of
the boats. The distance of A from the point where the trail
of the boat intersects with the coastline gives the distance
carried by the water flow (the frame displacement); from
that moment when the boats met, the frame displacement
was smaller, and can be found geometrically from similar
triangles formed by the following lines: the trail, the line
connecting the boat with its starting point, coastline, and
a parallel line to the coast, drawn through the intersec-
tion point of the trails. Analogous construction of similar
triangles for the other boat will complete the task.

57. Apply the idea 39: consider the number of cars passing a
given point in unit time (the car frequency), and equate
the sum of car frequencies of the two merging lanes with
the frequency for the lane C; this will give you the speed
on the lane C (the rest of the calculations are straightfor-
ward).

58. Apply the idea 39: introduce the density ρ of water in air;
then, the water flux (mass per unit time) is given by Sρv,
where S is the cross-sectional area, and v is the speed of
the man relative to the rain droplets. For a rectangular
man we calculate the total flux in two parts — water fall-
ing on the horizontal surface due to the vertical velocity of
the rain droplets, and water falling on the vertical surface
due to the motion of the man. For a spherical man, we
need to calculate the relative speed by using the triangle
rule for adding the velocities. In either case we obtain
a system of equations from which the surface areas and
wind’s speed can be eliminated.

59. The length of the trails is defined by the time interval
during which the droplet’s image remains within the gap
between the curtains. This, in turn, is inversely propor-
tional to that component of the image’s relative velocity
which is perpendicular to the curtain’s edge. In one case,
the velocity of the curtains v⃗ and the velocity of the
droplet’s image u⃗ are parallel, in the other case — anti-
parallel, and in the third case — perpendicular. In the
antiparallel case there are two possibilities: we don’t know
which is faster, the curtain or the image. While formally
we do have three unknown quantities, v, u, and the gap’s
width d, these enter the equations only in two combina-
tions, v/d and u/d, i.e. we have essentially only two un-
known parameters. Therefore, the expressions for l1 and
l2 can be solved with respect to v/d and u/d, which are
further used to calculate the value of l3.

60. For small circles, the radii should form a sequence rn =
g

2π n2τ2 (with n = 1, 2, . . .); for larger rings we should have
rn+1 − rn =

√
hgτ . By taking measurements from the fig-

ure, we can determine both g
2π n2τ2 and

√
hgτ as a product

of L and a certain numerical value; this gives us two equa-
tions from where we can eliminate τ and express h.

61. Apply the idea 27 and construct the wave front behind the
boat. Note that locally, the front propagates perpendicu-
larly to itself, so that the first to arrive to the coast is that
part of the wave front which was initially (i.e. at the point
of creation behind the boat) parallel to the coast. We can
also conclude by using the Huygens principle that close
to the boat, the wavefront forms angle arcsin u

v with the
boat’s trajectory.

62. Apply the idea 1: use the water’s frame of reference. We
assume that the water moves as a whole, across the whole
depth, hence in the water’s frame, the wave speed is the
same for all the propagation directions. Thus we can con-
clude that in the water’s frame, the boat’s velocity is par-
allel to the bisector of the angle formed by the waves. We
know that in lab frame, the boat moves parallel to the
line AB, hence we can deduce the water speed from the
triangle of velocities using the known value of the boat’s
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speed. From the Huygens principle we know that the angle
between the bisector and wave front is arcsin v

w , hence we
can measure the angle to find w and calculate the depth
h = w2/g.

63. i) Use the idea 1: in the air’s frame, the trail is parallel to
the relative velocity of the tractor. Hence, v⃗tractor − v⃗wind
is parallel to the trail; these two vectors form a triangle
which can be easily constructed (we know the directions
of its two sides, and one length), from where the length of
v⃗wind can be measured.
ii) Following the idea 40 we’d like to make use of the in-
tersection point of the trails. However, the tractors didn’t
meet. So, we need to draw one more trail which would
have been observed if the tractors were meeting at the
road crossing (shift the left tractor together with its trail
appropriately). Then, the wind speed can be related im-
mediately to the distance of the trails intersection point
from the road crossing (you just need to compare it with
the distance of the tractors from the crossing).

64. The main idea is to consider motion in a free-falling frame.
More specifically, in the free-falling frame, the balls move
with constant velocities, hence are at the base vertices B

and C of an isosceles triangle. In that frame, the throwing
point is the top vertex A of the isosceles triangle. The
current position of the point A in the lab frame can be
found by constructing the isosceles triangle. The point A

has fallen in the lab frame from point P with free fall ac-
celeration, and the falling time can be found by measuring
the falling distance |AP |. The velocities can be found by
measuring the flight distance |AB| (or |AC|) in the falling
frame.

65. Consider the motion of the boat in the air’s frame of refer-
ence. More specifically, based on wind data, calculate the
displacement vector (i.e. the displacement in east-west and
the displacement in north-south directions); knowing the
displacement vector in lab frame, calculate the displace-
ment vector of air, and based on that — its speed.

66. To begin with, you need to know that (as it follows from
the energy and momentum conservation laws) if two ab-
solutely elastic balls of equal mass collide centrally while
moving along the same line, they will exchange their velo-
cities: the ball A departs with the initial velocity of the
ball B and vice versa.

Next, there are two main ideas which need to be applied:
first, consider the motion of balls in a free-sliding frame
where all the balls move with constant speeds. The second
one is the idea 41: add a time axis and study the graphs.
You’ll notice that the x−t graph consists of N intersecting
lines with the intersection points corresponding to colli-
sions. The number of intersections is found as the number
of different possibilities of picking 2 lines out of the set of
N lines.

9 ANSWERS
1. vr = 4 km/h, vb = 16 km/h.

2. 4 km.

3. u = v/2
√

1 − (a/2r)2.
4. Ascending velocity 4.85 m/s; h = 2000 m; wind velocity
u = 2.8 m/s.
5. Straight line.
6. 2/

√
5 m/s

7. t = s
u + L

v cos α = 1.8 s
8. u = v/2 cos α; β = 180◦ − 2α

9. v(t) ≡ 2ωa.
10. 18.75 m
11. 39 m
12. t =

√
(t2

1 − t2
2)/2

13. 8d tan α

14. α = arcsin 0.5 = 30◦

15. 6.7 s
16. e100 − 1 seconds
17. x = cos α(l − h tan β) and t = h cos β

v + l sin α
u , where

β = arcsin(v sin α/u), if tan β < l/h; otherwise x = 0 and
t =

√
h2 + l2/v.

18. x = a
(

w
u cos α − tan α

)
, where α = arcsin

(
u

w+v

)
.

19. z ≤ v2
0

2g − gx2

2v2
0

20.
21. vmin =

√
g(a + b + c)

22.
23. Concentric arcs of radii l1 and l2, where l1 and l2 are the
distances of the instantaneous rotation centre from the top and
bottom plates, respectively.
24. r = 4R

25. a1 = v2
0/

√
3l; a2 = v2

0/
√

3l

26. v0 = v/(1 + sin α)
27. u = −v tan α, a = v2

l cos3 α .
28. u = v

vτ/l−1 ≈ 3.4 m/s.
29. u ≈ 15 km/h ≈ 4.2 m/s, α ≈ 27◦.
30. yes

31. t = 2
√

R
g

(
1 + RΩ2

g

)
and α = arctan(Ωt).

32. counterclockwise; 3; 15 Hz
33. 7 cm/s; 1 cm/s√

α−2+1/49
≈ 5.7 cm/s.

34. l/2.
35. L

√
3.

36. v0 = v
( 1

cos α − 1
)
, a = v2

b tan3 α.
37. nv0

√
2H/g = mR cos α with integer n and m

38. a = 2a0 sin(α/2)
39. a = v1v2/l

40. v ≥
√

r2g/2h

41. a logarithmic spiral
√

( v
c )2 − 1 ln r

r0
= φ.

42. v0/6, v0/2, v0
√

5/6,
√

2v2
0/36l

43. l sin ϕ, where tan ϕ = |v1 sin β−v2 sin α|/|v2 cos β−v1 cos α|
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44. ωR/ cos(α/2)

45.
√

a tan α/b

46. 2π2kr(2k + 1)/v

47.
√

v2
1 + v2

2 − 2v1v2 cos α/ sin α

48.
√

2v/µg; a parabola.

49.
√

4.5gR

50. 20 cm/s.

51. i) from A and C to the capital; ii) a(2−
√

2); iii) for A-B: 0
until turning point, −2v henceforth; for B-C: constantly −v

√
2;

iv) speed drops briefly down to −2v.

52. vmin = vmax = ωr.

53. A circle (ring) touching the ground and passing through
the wheel’s centre.

54. blue pulse was the first one; 300 ms < T < 500 ms;
v ≈ 65 cm/s, ω ≈ 23 rad/s, R ≈ 5 cm

55. We define k ≈ 0.014 via the shape of the jet y = kx2 using
the units of the figure grid; then d =

(
32V 2k/π2t2g

)
≈ 1 mm.

56. Let a line s1 connect the triangle (henceforth T ) with two
lower stars, and a line s2 — the square (S) with the remaining
star; draw a horizontal line s3 through the intersection point
of s1 and s2; mark the intersection point Q of the lines s3 and
TA; the starting point B of the other boat is the intersection
point of the upper coast with the line SQ.

57. 35 min

58. 1 min;
√

1.5 min ≈ 73 s.

59. 150 or 600 pixels.

60. h ≈ 3.2L.

61. R
v arccos u

v + L
u − R

√
u−2 − v−2.

62. v ≈ 1.8 m/s; h ≈ 2.0 m

63. i) vwind ≈ 13 km/h; ii) vwind ≈ 21 km/h

64. v ≈ 20 m/s

65. ≈ 12 m/s

66. N(N−1)
2 .
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