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1 INTRODUCTION
This booklet is a sequel to a similar collection of problems on
kinematics and has two main parts: Section 3 — Statics and
Section 4 — Dynamics; Section 5 contains revision problems.
The main aim of this collection of problems is to present the
most important solving ideas; using these, one can solve most
(> 95%) of olympiad problems on mechanics. Usually a prob-
lem is stated first, and is followed by some relevant ideas and
suggestions (letter ‘K’ in front of the number of an idea refers
to the correspondingly numbered idea in the kinematics book-
let; cross-linking works if the kinematics booklet is stored in
the same folder as the mechanics one). The answers to the
problems are listed at the end of the booklet (Section 7). They
are preceded by quite detailed hints (Section 6), but it is re-
commended that you use the hints only as a last resort, after
your very best efforts at tackling a problem fail (still, once you
have solved a problem successfully by yourself, it is useful to
check if your approach was the same as suggested by the hints).

The guiding principle of this booklet argues that almost all
olympiad problems are “variations” on a specific set of topics
— the solutions follow from corresponding solution ideas. Usu-
ally it is not very hard to recognize the right idea for a given
problem, having studied enough solution ideas. Discovering all
the necessary ideas during the actual solving would certainly
show much more creativity and offer a greater joy, but the skill
of conceiving ideas is unfortunately difficult (or even imprac-
ticable) to learn or teach. Moreover, it may take a long time
to reach a new idea, and those relying on trying it during an
olympiad would be in disadvantage in comparison to those who
have mastered the ideas.

In science as a whole, solution ideas play a similar role as
in olympiads: most scientific papers apply and combine known
ideas for solving new (or worse, old) problems, at best develop-
ing and generalising the ideas. Genuinely new good ideas occur
extremely rarely and many of them are later known as master-
pieces of science. However, as the whole repertoire of scientific
ideas encompasses immensely more than mere mechanics, it
is not so easy to remember and utilise them in right places.
The respective skill is highly valued; an especial achievement
would be employing a well-known idea in an unconventional
(unexpected, novel) situation.

In addition to ideas, the booklet also presents “facts” and
“methods”. The distinction is largely arbitrary, some ideas
could have been called methods or facts and vice versa; at-
tempt has been made to pursue the following categorization.
Facts are fundamental or particular findings, the knowledge
of which can be useful or necessary for problem solving, but
which are not formulated as ready recipes. While in theory,
all problems can be solved starting from the first principles
(the fundamental “facts”), but typically such a “brute force”
approach leads to long and sometimes unrealistically complex
calculations; the “ideas” are recipes of how to solve problems

more easily. The “methods” are powerful “ideas” of particu-
larly wide applicability.

Several sources have been used for the problems: Estonian
olympiads’ regional and national rounds, Estonian-Finnish
Olympiads, International Physics Olympiads, journal “Kvant”,
Russian and Soviet Union’s olympiads; some problems have
been modified (either easier or tougher), some are “folklore”
(origins unknown).

Similarly to the kinematics booklet, problems are classified
as being simple , normal , and difficult : the problem num-
bers are coloured according to this colour code (keep in mind
that difficulty is a subjective category!).

Finally, don’t despair if there are some things (or some sec-
tions) which you are not able to understand for the time being:
just forward to the next topic or next problem; you can return
to those parts which you didn’t understand later.

2 FIRST LAWS — THEORETICAL BASIS
Those who are familiar with the basic laws of mechanics can
skip this Section (though, you can still read it, you may get
some new insight), and turn to Section 3. In fact, it is ex-
pected that majority of readers can do this because almost
all the physics courses start with mechanics, and it is unlikely
that someone is drawn to such a booklet aiming to develop
advanced problem-solving skills without any prior experience
in physics. However, attempts have been made to keep this
series of study guides self-contained; this explains the inclusion
of the current chapter. Still, the presentation in this Section is
highly compressed and in some places involves such mathemat-
ical formalism which may seem intimidating for beginners (e.g.
usage of the summation symbol

∑
and differentials), therefore

it is not an easy reading. If you find this section to be too
difficult to start with, take a high-school mechanics textbook
and turn here to the Section “Statics”.

2.1 Postulates of classical mechanics

Classical mechanics, the topic of this booklet, is a science
based entirely on the three Newton’s laws2, formulated here
as “facts”.

fact 1: (Newton’s 1st law.) While the motion of bodies de-
pends on the reference frame (e.g. a body which moves with a
constant velocity in one frame moves with an acceleration in
another frame if the relative acceleration of the frames is non-
zero), there exist so-called inertial reference frames where the
facts 2–5 are valid for all the bodies.

fact 2: (Newton’s 2nd law.) In an inertial frame of refer-
ence, a non-zero acceleration a⃗ of a body is always caused by
an external influence; each body can be characterized by an
inertial mass m (in what follows the adjective “inertial” will
be dropped), and each influence can be characterized by a vec-
torial quantity F⃗ , henceforth referred to as the force, so that
equality F⃗ = ma⃗ is valid for any influence-body pair.

1As compared with v. 1.0, introductory theory sections are added
2I. Newton 1687
3which will also serve as the mass unit
4or a cylinder of 39.17 mm height and diameter, made of platinum-iridium alloy Pt-10Ir (the official SI definition).
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2.2 Basic rules derived from the postulates
Please note that once we establish an etalon for the mass3, e.g.
define 1 kg as the mass of one cubic decimeter of water4, the
fact 2 serves us also as the definitions of the mass of a body,
and of the magnitude of a force. Indeed, if we have a fixed ref-
erence force which is (a) guaranteed to have always the same
magnitude, and (b) can be applied to an arbitrary body (e.g.
a spring deformed by a given amount) then we can define the
mass of any other body in kilograms numerically equal to the
ratio of its acceleration to the acceleration of the etalon when
the both bodies are subject to the reference force. Newton’s
2nd law is valid if this is a self-consistent definition, i.e. if the
obtained mass is independent of what reference force was used.
Similarly, the magnitude of any force in Newtons (denoted as
N ≡ kg m/s2) can be defined to be equal to the product of
the mass and the acceleration of a body subject to that force;
Newton’s 2nd law is valid and this definition is self-consistent
if the result is independent of which test body was used.

To sum up: the Newton’s 2nd law F⃗ = ma⃗ serves us both
as the definition of the mass of a body (assuming that we have
chosen a mass etalon), and the force of an interaction; the law
ensures that these are self-consistent definitions: the mass of
a body and the magnitude of a force are independent of the
measurement procedure.

fact 3: Forces are additive as vector quantities: if there are
many forces F⃗i (i = 1 . . . n) acting on a body of mass m then
the fact 2 remains valid with F⃗ =

∑
i F⃗i.

The vector sum
∑

i F⃗i can be calculated using either the tri-
angle/parallelogram rule, or component-wise arithmetic addi-
tion: Fx =

∑
i F⃗ix, where an index x denotes the x-component

(projection onto the x-axis) of a vector; similar expressions can
be written for the y- and z-axis.

fact 4: Masses are additive as scalar quantities: if a body
is made up of smaller parts of masses mj (j = 1 . . . m) then
the total mass of the compound body equals to the sum of the
masses of its components, m =

∑
j mj .

fact 5: (Newton’s 3rd law.) If a body A exerts a force F⃗ on
a body B then the body B exerts simultaneously the body A

with an equal in modulus and antiparallel force −F⃗ .

2.2 Basic rules derived from the postulates
The facts 1–5 can be considered to be the postulates of clas-
sical (Newtonian) mechanics, confirmed by experiments. All
the subsequent “facts”, theorems, etc. can be derived mathem-
atically using these postulates.

Thus far we have used a vague concept of the acceleration
of a body. Everything is fine as long as a body moves trans-
lationally, i.e. so that all its points have the same acceleration
vector. However, if a body has a considerable size and rotates
then different points have different accelerations, so that we
need to clarify, the acceleration of which point needs to be
used. In order to overcome this difficulty and keep our set of

postulates 1–5 as simple as possible, let us assume that the fact
2 is valid for so-called point masses, i.e. for very small bodies
the dimensions of which are much smaller than the charac-
teristic travel distances; then, the position of a point mass is
described by a single point which has unambiguously defined
velocity and acceleration. We can generalize the fact 2 to real
finite-sized-bodies by dividing these fictitiously into tiny pieces,
each of which can be treated as a point mass.

To begin with, one can derive (see appendix 1) the generic
formulation of the Newton’s 2nd law.

fact 6: (Momentum conservation law/generalized Newton’s
2nd law.) For the net momentum P⃗ =

∑
i miv⃗i of a system of

point masses5,
d
dt

P⃗ = F⃗ , (1)
where F⃗ is the net force (the sum of external forces) acting on
the system. In particular, the net momentum is conserved
(P⃗ =const) if F⃗ = 0.

By substituting P⃗ =
∑

i miv⃗i =
∑

i mi
dr⃗i

dt = d
dt

∑
i mir⃗i

(where r⃗i denotes the position vector of the i-th point mass),
we can rewrite Eq (1) as

M
d2r⃗C

dt2 = F⃗ ,

where
r⃗C =

∑
i mir⃗i∑

i mi
(2)

is called the centre of mass. This result clarifies: in the case
of macroscopic bodies, the fact 2 remains valid if we use the
acceleration of the centre of mass.

According to the Newton’s 2nd law, once we know how the
interaction forces between bodies depend on the inter-body dis-
tances and on the velocities, we can (in theory) calculate how
the system will evolve in time (such systems are refereed to
as determinstic systems). Indeed, we know the accelerations
of all the bodies, and hence, we can determine the velocities
and positions after a small time increment: if the time in-
crement ∆t is small enough, the changes in accelerations ∆a⃗

can be neglected, which means that the new velocity for the
i-th body will be v⃗′

i = v⃗i + a⃗i∆t, and the new position vector
r⃗′

i = r⃗i + v⃗i∆t; the whole temporal dependences v⃗i(t) and r⃗i(t)
(with i = 1 . . . N where N is the number of bodies) can be
obtained by advancing in time step-by-step. In mathematical
terms, this is a numerical integration of a system of ordinary
differential equations: the second time derivatives of coordin-
ates ẍi, ÿi, and z̈i are expressed in terms of the coordinates xi,
yi, zi, and the first derivatives ẋi, ẏi, żi

6. While in principle,
these calculations can be always made, at least numerically
and assuming that we have enough computational power, in
practice the mathematical task can be very difficult7. Apart
from the facts 1–5, the Newtonian mechanics is a collection of
recipes for easier solution of these differential equations.

Among such recipes, finding and applying conservation laws
has a central role. This is because according to what has been
said above, the evolution of mechanical systems is described
by a system of differential equations, and each conservation

5such as rigid bodies in which case the point masses are bound by inter-molecular forces together into a macroscopic body
6Here we assume that the force depends only on the coordinates and velocities of the bodies; with the exception of the Abraham-Lorentz force

(accounting for the cyclotron radiation), this is always satisfied.
7Also, there is the issue of possibly chaotic behavour when in many-body-systems, small differences in initial conditions lead to exponentially

growing differences — in the same way as it is impossible to put a sharp pencil vertically standig on its tip onto a flat surface.
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2.2 Basic rules derived from the postulates
law reduces the order of that system by one; this makes the
mathematical task much simpler. The conservation laws can
be derived mathematically from the Newton’s laws; while it is
definitely useful to know how it is done, majority of mechanics
problems can be solved without being familiar with this pro-
cedure. Because of that, the conservation laws are derived in
Appendices 1,2, and 3; here we just provide the formulations.
We have already dealt with the momentum conservation law
(see fact 6), so we can proceed to the next one.

fact 7: (Angular momentum conservation law.) For the net
angular momentum L⃗ =

∑
i mir⃗i × v⃗i of a system of bodies,
d
dt

L⃗ = T⃗ , (3)
where

T⃗ =
∑

i

r⃗i × F⃗i

is the net torque acting on the system; here F⃗i stands for the
net force acting on the i-th point mass. In particular, the net
angular momentum of the system is conserved if T⃗ = 0.

Eq. (3) is derived in appendix 2, and can be considered to be
the Newton’s 2nd law for rotational motion of bodies.

In three-dimensional geometry, calculating the vector
products to determine the net torque and angular momentum
may be quite difficult. Luckily, most of the Olympiad prob-
lems involve two-dimensional geometry: velocities, momenta,
and radius vectors lie in the x − y-plane, and vector products
(torques and angular momenta) are parallel to the z-axis, i.e.
we can consider L⃗ = r⃗ × p⃗ and T⃗ = r⃗ × F⃗ as scalars, charac-
terized by their projection to the z-axis (in what follows de-
noted as L and T , respectively). According to the definition
of the vector product, the sign of such torque is positive if the
rotation from the vector r⃗ to the vector F⃗ corresponds to a
clockwise motion, and negative otherwise. Thus we can write
T = |r⃗| × |F⃗ | sin α, where α is the angle between the radius
vector and the force and can be either positive (rotation from
r⃗ to F⃗ is clockwise) or negative. We can introduce the arm of
the force h = |r⃗| sin α (see figure), in which case

T = |F⃗ |h;
similarly we can use the tangential component of the force
Ft = |F⃗ | sin α and obtain

T = |r⃗|Ft.

Similar procedure can be applied to the angular momenta:
L = |r⃗||p⃗| sin α = h|p⃗| = |r⃗|pt.

r~ F~

α

area =
torque

F~t

O
origin
(axis)

force application point

h

The discipline of statics studies equilibria of bodies, i.e. con-
ditions when there is an inertial frame of reference where a
body remains motionless. It is clear that both the momentum
and angular momentum of a body at equilibrium needs to be

constant, hence the sum of all the forces, as well as the sum
of all the torques acting on a body must be zero; this applies
also to any fictitious part of a body. While there are statics
problems which study deformable bodies (which change shape
when forces are applied to it), there is an important idealiza-
tion of rigid body: a body which preserves its shape under any
(not-too-large) forces.

While for the Newton’s 2nd law [Eq. (1)], and for the static
force balance condition, it doesn’t matter where the force is
applied to, in the case of angular momentum [Eq. (3)] and for
the static torque balance condition, it becomes important. In
classical mechanics, the forces are divided into contact forces
which are applied at the contact point of two bodies (elasticity
forces in its various forms, such as normal and friction forces,
see below), and body forces which are applied to every point
of the solid body (such as gravity and electrostatic forces).
The application point of contact forces is obviously the contact
point; in the case of body forces, the torque can be calculated
by dividing the entire body (system of bodies) into so small
parts (point masses) and by integrating the torques applied to
each of these. It is easy to see that with the total body force
(i.e. the sum of all the body forces applied to different parts
of the body) F⃗ and total torque T⃗ applied to a body, one can
always find such a radius vector r⃗ that T⃗ = r⃗×F⃗ , i.e. although
the body forces are applied to each point of the body, the net
effect is as if the net force F⃗ were to applied to a certain ef-
fective application centre; in some cases, there are simple rules
for finding such effective application centres, e.g. in the case
of an homogeneous gravity field, it appears to be the centre of
mass.8.

At the microscopic level of quantum mechanics, such a di-
vision of forces becomes meaningless, because on the one hand,
fields which mediate body forces are also material things and
in this sense, all the forces are contact forces. On the other
hand, classical contact forces are also mediated at the micro-
scopic level via fields so that in a certain sense, all the forces
are body forces. Regardless, at the macroscopic level such a
division still remains helpful.

fact 8: (Energy conservation law; for more details, see ap-
pendix 3.) If we define the kinetic energy for a system of point
masses (or translationally moving rigid bodies) as

K = 1
2
∑

i

miv⃗
2
i ,

and the total work done by all the forces during infinitely small
displacements dr⃗i of the point masses as

dW =
∑

i

F⃗i · dr⃗i

then the change of the kinetic energy equals to the total work
done by all the forces,

dK = dW ;
here, F⃗i denotes the total force acting on the i-th point mass.
The work done by so-called conservative forces depends only on
the initial and final states of the system (i.e. on the positions of
the point masses), and not along which trajectories the point
masses moved. This means that the work done by conservative

8Similarly, if two bodies make contact over a finite-sized area (rather than at just few contact points), we would need to find the total torque by
integrating over the contact area, and one can always find the effective application point of these forces

9dΠ ≡ Π(r⃗1 + dr⃗1, r⃗2 + dr⃗1, . . .) − Π(r⃗1, r⃗2, . . .)
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2.3 Basic forces
forces can be expressed as the decrease of a certain function of
state Π(r⃗1, r⃗2 . . .) which is referred to as the potential energy;
for infinitesimal displacements we can write dWcons = −dΠ9.
Therefore, if we define the full mechanical energy as E = K +Π
then

dE = dW ′,

where dW ′ stands for the work done by the non-conservative
forces; if there are no such forces then dE = 0, hence

E = Π + K = const. (4)

Here few comments are needed. First, while the momentum
of a body is the momentum of its centre of mass, the kinetic
energy of a composite body is not just the kinetic energy of its
centre of mass: the kinetic energy in the frame of the centre of
mass (“CM-frame”) needs to be added, as well,

K = 1
2

Mv2
C + 1

2
∑

i

miu⃗
2
i ,

where where u⃗i = v⃗i − v⃗C is the velocity of the i-th point mass
in the CM-frame 10. How to calculate the kinetic energy in
the frame of the centre of mass for rotating rigid bodies will be
discussed somewhat later.

Finally, let us notice that forces depending on the velocities
(e.g. friction forces) and/or on time (e.g. normal force exerted
by a moving wall), cannot be conservative because the work
done by such forces along a path depends clearly on how fast
the bodies move. An exception is provided by those velocity-
dependent forces which are always perpendicular to the velo-
city (e.g. for the Lorentz force and normal force) and for which
dW = F⃗ · dr⃗ = F⃗ · v⃗dt ≡ 0.

2.3 Basic forces
Gravity. Now, let us consider the case of a gravity field in
more details; it can be described by the free fall acceleration
vector g⃗. From the “Kinematics” we know that then all the
bodies move with the acceleration g⃗; then, according to the
Newton’s 2nd law, this should be caused by a force

F⃗ = mg⃗.

This is called the gravity force. The fact that in a given gravity
field, the gravity force is proportional to the mass of a body is
to be considered as an experimental finding. Let us recall that
the mass is introduced via the Newton’s 2nd law and describes
the inertia of a body, i.e. the capability of a body to retain its
velocity; because of this we can call it also the inertial mass.
Here, however, the mass enters a completely different law: the
gravity force is proportional to the mass. It is easy to imagine
that the gravity force is defined by another characteristic of
a body, let us call it the gravitational mass, unrelated to the
inertial mass. Experiments show that the gravitational mass
is always equal to the inertial mass and thus we can drop the
adjectives “gravitational” and “inertial”. As a matter of fact,
the equivalence of inertial and gravitational mass has a great
significance in physics and represents the main postulate and
cornerstone of the general theory of relativity.

From the Newton’s 3rd law we know that each force is
caused by some other body: a gravity force acting on a body
A needs to be caused by a body B. We also know that the
gravity force is caused by and is proportional to the mass of a
body, and apparently this applies both to the body A, and body
B. Hence, the force needs to be proportional to the product of
masses, F = cmAmB , where the coefficient of proportionality c

can be a function of distance. It appears that c is inversely pro-
portional to the squared distance, c = G/r2; let us consider this
as an experimental finding. Here G ≈ 6.67 × 10−11 m3kg−1s−2

is called the gravitational constant. Now it is easy to guess
that this force must be parallel to the only preferred direction
for a system of two point masses, the line connecting the two
points. This is indeed the case; furthermore, the gravitational
force appears to be an attractive force.

fact 9: The gravitational force acting on the i-th point mass
due to the j-th point mass can be expressed as

F⃗i = r̂ij
Gmimj

r2
ij

, (5)

where r̂ij = (r⃗j −r⃗i)/|r⃗j −r⃗i| stands for the unit vector pointing
from the i-th body to the j-th body and rij = |r⃗j − r⃗i|11. The
presence of a third body does affect the validity of this law,
i.e. the superposition principle holds: total gravitational force
can be found by summing up the contributions from all the
gravitating bodies according to Eq. (5).12 Eq. (5) remains also
valid when the gravitationally interacting bodies have spheric-
ally symmetric mass distribution — in that case, r⃗i and r⃗j point
to the respective centres of symmetry (which coincide with the
centres of mass) 13 NB! in the case of arbitrarily shaped bodies,
using the centres of mass would be incorrect; the force needs
to be calculated by dividing the bodies into point masses and
taking integral.

For the gravitational pull of the Earth, we can typically ap-
proximate rij with the radius of the Earth RE , so that

F⃗ = mg⃗, g⃗ = ẑ
GME

R2
E

≈ ẑ · 9.81 m/s2, (6)

where ẑ stands for a downwards pointing unit vector and ME

denotes the Earth’s mass.

Note that the force due to a homogeneous gravity field g⃗ is
applied effectively to a centre of mass of a body, regardless of
its shape. Indeed, the torque of the gravity force is calculated
then as

T =
∑

i

r⃗i × g⃗mi =

(∑
i

r⃗imi

)
× g⃗ = r⃗C × g⃗M,

where M =
∑

i mi.
Gravity force is a conservative force because for any pair

of point masses, the force is directed along the line connecting
these point masses and depends only on the distance between
these (cf. appendix 3). The work done by a gravity force
F⃗ = mg⃗ due to a homogeneous gravity field can be expressed
as dA = mg⃗ · dr⃗, hence Π = −mg⃗ · dr⃗; upon integration we

10Indeed, we divide the body into point masses and write K = 1
2
∑

i
mi(v⃗i − v⃗C + v⃗C)2 = 1

2
∑

i
mi(u⃗i + v⃗C)2; now we can open the braces and

factorize v⃗C : 1
2
∑

i
(u⃗i + v⃗C)2 = 1

2
∑

i
miu⃗

2
i + v⃗C

∑
i

miu⃗i + 1
2 v⃗2

C

∑
i

mi. Here,
∑

i
miu⃗i is the total momentum in the CM-frame, which is zero

according to the definition of the centre of mass.
11I. Newton 1687
12The superposition principle corresponds to the linearity of the non-relativistic equations of the gravity field and can be treated as an experimentally

verified postulate.
13In the booklet of electromagnetism, this property will be derived from Eq. (5) using the superposition principle.
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2.3 Basic forces
obtain

Π = −mg⃗ · (r⃗ − r⃗0),
where r⃗0 is the vector pointing to an arbitrarily chosen refer-
ence point. Now, keeping in mind that the energy is additive,
we can write an expression for the gravitational potential en-
ergy of N bodies:

Π = −g⃗ ·
∑

i

mi(r⃗i − r⃗0) = −g⃗ · (r⃗C − r⃗0)
∑

mi. (7)

Gravitational energy of two point masses can be calculated
similarly by integration; for two point masses, it is usually
convenient to take the reference configuration (for which the
potential energy is zero) such that the distance between the
two bodies is infinite. For small displacements, the work done
by the gravity forces acting on the both bodies

dW = G
m1m2

r2
12

r̂12 · (dr⃗1 − dr⃗2) = −G
m1m2

r2
12

dr12

[here we took into account that dr⃗1 − dr⃗2 = d(r⃗1 − r⃗2), and
r̂12 · d(r⃗1 − r⃗2) = −dr12]. So,

Π =
∫ r12

∞
G

m1m2

r2 dr = −G
m1m2

r12
.

If there are more than two interacting bodies, we can use the
superposition principle to find

Π = −G
∑
i>j

mimj

rij
; (8)

note that the interaction energy of any pair of bodies needs to
be counted only once, hence we sum over pairs with i > j.

fact 10: Potential energy of two gravitationally interacting
spherically symmetric bodies is given by Eq. (8); in the case
of homogeneous downwards-directed gravity field of strength
g, the change of potential energy of a body of mass m is
∆Π = g∆h, where h is the change of height.

Elasticity. Similarly to gravity forces, elasticity forces can
be met literally at each our step. While microscopically, all
elasticity forces can be explained (at least in principle) in terms
of electrostatic interactions using quantum mechanics, macro-
scopically it can take different forms. First of all, there is the
Hooke’s law which describes elasticity forces for deformable
bodies (e.g. a rubber band or a spring); there are also normal
force and dry friction force which seemingly have nothing to do
with elasticity, but in reality, both normal force and dry fric-
tion force have microscopically the same origin as the Hooke’s
law.

fact 11: (Hooke’s law14) If the deformation of an elastically
deformable body is not too large, the deformed body exerts a
force which (a) is antiparallel to the deformation vector a⃗ and
(b) by modulus is proportional to the deformation, i.e.

F⃗ = −ka⃗. (9)

This law is valid for small deformations of all elastic ma-
terials including rubber bands, springs, etc, as long as the de-
formation is not too large, and the body deformation includes
only stretching (or compression), and does not involve bending
or shear15. If bending and shear deformations are involved,
with a fixed deformation direction (described by the unit vec-
tor â ≡ a⃗/|⃗a|), the force modulus remains to be proportional to

|⃗a|; however, then the stiffness (the proportionality coefficient
k) depends also on â, and force is not necessarily antiparallel
to the displacement16.

Elasticity forces are conservative, potential energy can be
found by simple integration Π = −

∫
F⃗ · da⃗ =

∫
kada = 1

2 ka2.

fact 12: Under the assumptions of fact 9, the potential energy
of an elastically deformable body is given by

Π = 1
2

ka2. (10)

It is quite clear that if we take, for instance, a rubber band
of length l and stiffness k, making it twice longer will reduce
its stiffness by a factor of two. Indeed, one can divide the
longer band fictitiously into two halves, each of length l, which
means that if we apply now the same force F to the endpoints
of the long band, both halves will be deformed by x = F/k

and hence, the entire band is deformed by x′ = x + x = 2F/k

so that the stiffness k′ = F/x′ = k/2. Similarly, making the
band twice thicker will increase the stiffness by a factor of two
because we can consider the thicker band as being made of two
parallel thinner bands. NB! this does not apply to the springs
and bending deformation: while making a spring twice longer
will, of course, still decrease k by a factor of two, making it
from a twice thicker wire will increase the stiffness more than
two-fold: by the same bending angle the thicker wire will be
deformed more than a thinner wire. This paragraph can be
summarized as the following fact.

fact 13: For a band of elastic material of length L and cross-
sectional area A, the stiffness

k = AY/L, (11)
where Y denotes the so-called Young modulus of the material17.

This equality makes it possible to give an alternative formu-
lation of the Hooke’s law. To that end, let us introduce the
concepts of the strain, which is defined as the relative deform-
ation ε = a/L, and stress which is defined as the elasticity
force per unit area, σ = F/A. Then, the Hooke’s law can be
rewritten as

σ = εY.

One can also introduce the concept of energy density of a
deformed material, the ratio of the potential energy and the
volume, w = Π/(LA) = 1

2 Y ε2.
Now we can also address the question, which deformations

can be considered as “small enough” so that the Hooke’s law
remains valid. One might think that we need to have ε ≪ 1,
but typically this is a too loose requirement: majority of elastic
materials break far before deformations ε ∼ 1 are reached. Typ-
ically, the Hooke’s law starts failing when deformations are so
large that the material is close to breaking. Also, for such large
deformations, the material is no longer fully elastic: when the
force is removed, the material does not fully restore its ini-
tial shape and some residual deformation will remain; such
deformations are referred to as plastic deformations. There are
also materials (which can be referred to as plastic materials or

14R. Hooke 1660
15Deformation of springs, in fact, does involve bending, but the Hooke’s law remains in that case nevertheless valid.
16A proper description of the elasticity forces when bending and shearing are involved requires tensorial description and is beyond the scope of this

booklet
17L. Euler 1727, G. Riccati 1782
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plastically deformable materials) which deform plastically over
a very wide range of strain values before breaking into pieces.
In such cases, the Hooke’s law remains valid only for extremely
small strains by which the deformation still remains elastic.

Note that there are hyperelastic materials for which the de-
formation can be very large, ε > 1; then, indeed, the condition
ε ≪ 1 is required for the applicability of the Hooke’s law.

Majority of the materials have rather large values of Y

which means that unless we have really long and thin threads
or wires, moderate forces will cause only a really minute and
un-noticeable deformations. This is typically the case for wires,
ropes, rods, and solid surfaces. In those cases, while the geo-
metrical effect of the deformations can be neglected, such a de-
formation will be formed that the elasticity force compensates
any applied external force. If we are dealing with a solid sur-
face, such an elasticity force is called the normal force; in the
case of rods, wires and ropes, we call it the tension force.

Unless otherwise emphasized, it is assumed that the tension
force is parallel to the rod, wire or rope. In the case of a rope
or a thin wire, this is essentially always the case: there is no
possibility of having an elastic shear or bending because the
rope is typically very “soft” with respect to such deformations:
if we try to create a perpendicular elasticity force by apply-
ing a peperpendicular external force, the rope will be bended
without giving rise to any noticeable force. In the case of a rod,
this is not true: if we apply an external perpendicular force, the
rod resists elastically to the attempts of bending and creates a
perpendicular component of the tension force. Still, if all the
external forces applied to a rod are parallel to it, according to
the Newton’s 3rd law, the tension force will be also parallel to
the rod.

In the case of a stretched string (rod, rope, etc), we can
divide it fictitiously into two parts. Then, at the division point
P , the two pieces attract each other with a certain elasticity
force. The direction of this force depends on which part of
the string is considered, but due to the Newton’s 3rd law, the
modulus of the force remains the same. The force with which
the two fictitious parts of the rope interact with each other at
the point P describes the state of the rope at that point, and
is referred to as the tension. So, we’ll distinguish the force F⃗

which is applied to the endpoint of a rope, and the tension T ,
which is defined for any point of the rope and describes the
state of it; note that when external forces are applied only to
the endpoints of a rope at equilibrium, |F⃗ | = T (this follows
from the force balance condition for any fictitious part of the
rope).

fact 14: Tension is an elasticity force in a linear construction
element such as string (rod, wire, etc)18. For a non-stretchable
string19, if it is being pulled (or pushed, which can happen in
the case of a rod) the tension adjusts itself to the externally
applied force to prevent stretching. If the mass of a thread or
rope can be neglected, the tension is constant along it. In a
freely bending rope, the tension force at a point P is parallel
to the tangent drawn to the rope at point P .

fact 15: Normal force is the perpendicular to the surface
component of an elasticity force at the surface of a rigid (non-
deformable) body with which the rigid body acts on a con-
tacting body; it adjusts itself to the externally applied force
preventing thereby the rigid body from being deformed.

Note that if the externally applied force is not perpendicu-
lar to the rigid body surface then due to the Newton’s 3rd law,
the elasticity force will have both perpendicular to the surface
and tangential (parallel to the surface) components. The latter
manifests itself at the contact points of two solid bodies as the
friction force. More accurately, the friction force is the force
at the contact point of two bodies due to the interaction of the
molecules of one body with the molecules of the other body
when the bodies try to slip one over the other; the surface mo-
lecules are kept at their place due to the elasticity forces inside
each of the bodies; these elasticity forces are caused by the
(typically unnoticeably small) shear deformation of the bodies.

In the case of solid bodies, if the external tangential forces
are not too large as compared with the normal forces, the bod-
ies will not slip, and the friction force adjusts itself so as to
compensate the external tangential forces; this is called the
static friction force.

fact 16: (Amontons’ law.) The maximal static friction force
at the contact area of two bodies Fmax = µsN , where N is the
normal force at that contact area and µs is a constant depend-
ent on the two contacting materials, referred to as the static
coefficient of friction; it may also depend on the temperature,
humidity, etc. Thus, Fmax is independent of the contact area.

fact 17: (Coulomb’s friction law.) When two bodies move
with respect to each other, the friction force at the contact
area of these bodies F = µkN , where N is the normal force
at that contact area and µk is a constant dependent on the
two contacting materials, referred to as the kinetic coefficient
of friction; it does depend slightly on the slipping speed, but
this dependence is weak and typically ignored.

In the case of Olympiad problems, most often it is assumed
that µs = µk, but sometimes these are taken to be different,
with µs > µk.

While the friction laws are very simple and have been for-
mulated a long time ago20, deriving it from the microscopic
(molecular) dynamics turns out to be a very difficult task (there
are still papers being published on that topic in research pa-
pers, c.f. M.H. Müser et al., Phys. Rev. Lett. 86, 1295 (2000),
and O.M. Braun et al., Phys. Rev. Lett. 110, 085503.

3 STATICS
When solving problems on statics, one can always use stand-
ard brute-force-approach: equations (1) and (3) tells us that
for each body at equilibrium, F⃗ = 0 and T⃗ = 0. So, for each
solid body, we have a force balance condition, and a torque
balance condition. According to the standard procedure, these
equations are to be projected onto x-, y- and z-axis yielding us

18In the bulk of three-dimensional elastic bodies, instead of tension, the concept of stress is used; the respective description is mathematically more
complicated, e.g. the stress is a tensor quantity.

19More precisely, a string made of a material with a very large value of Young modulus Y .
20The friction laws were developed by L. da Vinci 1493, G. Amontons 1699, and C.A. Coulomb 1785.
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six equations (assuming 3-dimensional geometry); if there are
N interacting bodies, the overall number of equations is 6N .
For a correctly posed problem, we need to have also 6N un-
known parameters so that we could solve this set of algebraic
equations. The description of the procedure sounds simple, but
solving so many equations might be fairly difficult. In the case
of 2-dimensional geometry, the number of equations is reduced
twice (while the number of force balance equations comes down
to two, all torques will be perpendicular to the plane, so there
is only one torque equation), but even with only two bodies,
we have still 6 equations.

Luckily, there are tricks which can help us reducing the
number of equations! Usually the main ingenuity lies in

idea 1: choose optimal axes to zero as many projections of
forces as possible. It is especially good to zero the projections
of the forces we do not know and are not interested in,

for instance, the reaction force between two bodies or the
tensile force in a string (or a rod). To zero as many forces
as possible it is worthwhile to note that a) the axes may not be
perpendicular; b) if the system consists of several bodies, then
a different set of axes may be chosen for each body.

idea 2: for the torques equation it is wise to choose such
a pivot point that zeroes as many moment arms as possible.
Again it is especially beneficial to zero the torques of “uninter-
esting” forces.

For example, if we choose the pivot to be at the contact point of
two bodies, then the moment arms of the friction force between
the bodies and of their reaction force are both zero.

As mentioned above, for a two-dimensional system, we
can write two equations per body for the forces (x- and y-
components) and one equation (per body) for the torques. We
could increase the number of equations either by using more
than two projections for force balance equations, or more than
one pivot point (“axis” of rotation) for the torque balance.
However,

fact 18: the maximum number of linearly independent equa-
tions (describing force and torque balance) equals the number
of degrees of freedom of the body (three in the two-dimensional
case, as the body can rotate in a plane and shift along the x-
and y-axis, and six in the three-dimensional case).

So, if we write down two force balance conditions with two
torque balance conditions then one of the four equations would
always be a redundant consequence of the three others.

Equations (1) and (3) seem to tell us that for 2-dimensional
geometry, we should use one torques equation and two force
equations; however, each force equation can be “traded for”
one torques equation. So, apart for the “canonical” set of
two force equations and one torque equation, we can use one
force equation with two torque equations (with two differ-
ent pivot points), and we can also use three torques equa-
tions with three different pivot points which must not lie on a
single line. Indeed, let us have two torque balance conditions,∑

i

−−→
OPi × F⃗i = 0 and

∑
i

−−→
O′Pi × F⃗i = 0 where Pi is the ap-

plication point of the force F⃗i. Once we subtract one equation
from the other, we obtain

∑
i

−−→
OO′ × F⃗i =

−−→
OO′ ×

∑
i F⃗i = 0,

which is the projection of the force balance condition to the
perpendicular of OO′. It should be emphasized that at least
one torques equation needs to be left into your set of equations:
the “trading” of force equations for torques equations works be-
cause a rotation around O by a small angle dφ followed by a
rotation around O′ by −dφ results in a translational motion by
|OO′|dφ, but there is no such sequence of translational motions
which could result in a rotational motion.

idea 3: Using torque balance conditions is usually more effi-
cient than using force balance conditions because for any force
balance condition, we can eliminate only one force21 by project-
ing the condition to the perpendicular of that force; meanwhile,
if we choose the pivot point as the intersection point of the two
lines along which two unparallel forces are applied, both forces
disappear from the equation.

pr 1. An end of a light wire rod is bent into a hoop of radius
r. The straight part of the rod has length l; a ball of mass M

is attached to the other end of the rod. The pendulum thus
formed is hung by the hoop onto a revolving shaft. The coeffi-
cient of friction between the shaft and the hoop is µ. Find the
equilibrium angle between the rod and the vertical.

r

l

M

ω

µ

This problem is classified as a difficult one because most people
who try to solve it have difficulties in drawing a qualitatively
correct sketch. What really helps making a correct sketch is
relying on the idea 2. Mathematical simplifications are further
offered by

fact 19: on an inclined surface, slipping will start when the
slope angle α fulfills tan α = µ.

pr 2. On an incline with slope angle α there lies a cylinder
with mass M , its axis being horizontal. A small block with
mass m is placed inside it. The coefficient of friction between
the block and the cylinder is µ; the incline is nonslippery. What
is the maximum slope angle α for the cylinder to stay at rest?
The block is much smaller than the radius of the cylinder.

α

m

M

Here we can again use fact 19 and idea 2 if we add

idea 4: sometimes it is useful to consider a system of two
(or more) bodies as one whole and write the equations for the
forces and/or the torques for the whole system.

21unless there are parallel forces
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Then, the net force (or torque) acting on the compond body
is the sum of external forces (torques) acting on the constitu-
ents. Our calculations are simplified because the internal forces
(torques) between the different parts of the compound body can
be ignored (due to Newton’s 3rd they cancel each other out).
For the last problem, it is useful to assemble a compound body
from the cylinder and the block.

pr 3. Three identical rods are connected by hinges to each
other, the outmost ones are hinged to a ceiling at points A and
B. The distance between these points is twice the length of a
rod. A weight of mass m is hanged onto hinge C. At least how
strong a force onto hinge D is necessary to keep the system
stationary with the rod CD horizontal?

B

m

A

C D
F

Again we can use idea 2. The work is also aided by

fact 20: if forces are applied only to two endpoints of a rod
and the fixture(s) of the rod at its endpoint(s) is (are) not rigid
(the rod rests freely on its supports or is attached to a string
or a hinge), then the tension force in the rod is directed along
the rod.

Indeed, at either endpoints, the applied net external force F⃗

must point along the rod, as its torque with respect to the other
endpoint must be zero. Further, according to the Newton’s 3rd

law, the external force F⃗ must be met by an equal and oppos-
ite force exerted by the rod, which is the tension force T⃗ , so
F⃗ = −T⃗ .

Some ideas are very universal, especially the mathematical
ones.

idea K-2 some extrema are easier to �nd without using deriv-

atives,

for example, the shortest path from a point to a plane is per-
pendicular to it.

pr 4. What is the minimum force needed to dislodge a block
of mass m resting on an inclined plane of slope angle α, if the
coefficient of friction is µ? Investigate the cases when a) α = 0;
b) 0 < α < arctan µ.

α

Fm

idea 5: force balance can sometimes be resolved vectorially
without projecting anything onto axes.

Fact 19, or rather its following generalisation, turns out to be
of use:

idea 6: if a body is on the verge of slipping (or already slip-
ping), then the sum of the friction force and the reaction force
is angled by arctan µ from the surface normal.

This idea can be used fairly often, for instance in the next
problem.

pr 5. A block rests on an inclined surface with slope angle
α. The surface moves with a horizontal acceleration a which
lies in the same vertical plane as a normal vector to the surface.
Determine the values of the coefficient of friction µ that allow
the block to remain still.

α

a

µ

Here we are helped by the very universal

idea 7: many problems become very easy in a non-inertial
translationally moving reference frame.

To clarify: in a translationally moving reference frame we can
re-establish Newton’s laws by imagining that each body is ad-
ditionally acted on by an inertial force −ma⃗ where a⃗ is the
acceleration of the frame of reference and m is the mass of
a given body. Indeed, we have learned in kinematics that for
translational motion of a reference frame, the accelerations can
be added, cf. idea K-19; so, in a moving frame, all the bodies
obtain additional acceleration −a⃗, as if there was an additional
force F⃗ = −ma⃗ acting on a body of mass m.

Note that that due to the equivalence of the inertial and
heavy mass (cf. “Gravity”, Section 2.3) the inertial foce is
totally analogous to the gravitational force22. Because of that,
we can use

idea 8: the net of the inertial and gravitational forces is
usable as an effective gravitational force.

pr 6. A cylinder with radius R spins around its axis with an
angular speed ω. On its inner surface there lies a small block;
the coefficient of friction between the block and the inner sur-
face of the cylinder is µ. Find the values of ω for which the
block does not slip (stays still with respect to the cylinder).
Consider the cases where (a) the axis of the cylinder is hori-
zontal; (b) the axis is inclined by angle α with respect to the
horizon.

ω

α

idea 9: a rotating frame of reference may be used by adding
a centrifugal force mω2R⃗ (with ω being the angular speed of
the frame and R being a vector drawn from the axis of rota-
tion to the point in question) and Coriolis force. The latter is
unimportant (a) for a body standing still or moving in parallel
to the axis of rotation in a rotating frame of reference (in this
case the Coriolis force is zero); (b) for energy conservation (in
this case the Coriolis force is perpendicular to the velocity and,
thus, does not change the energy).

Warning: in this idea, the axis of rotation must be actual, not
instantaneous. Expressions for the centrifugal force and Cori-
olis force are derived in appendix 4.

For the problem 6, recall also idea K-2b and idea 6; for part
(b), add

22Their equivalence is the cornerstone of the theory of general relativity (more specifically, it assumes the inertial and gravitational forces to be
indistinguishable in any local measurement).
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idea K-11: in case of three-dimensional geometry, consider two-

dimensional sections. It is especially good if all interesting

objects (for example, force vectors) lie on one section. The

orientation and location of the sections may change in time.

pr 7. A cart has two cylindrical wheels connected by a
weightless horizontal rod using weightless spokes and friction-
less axis as shown in the figure. Each of the wheels is made
of a homogeneous disc of radius R, and has a cylidrical hole
of radius R/2 drilled coaxially at the distance R/3 from the
centre of the wheel. The wheels are turned so that the holes
point towards each other, and the cart is put into motion on
a horizontal floor. What is the critical speed v by which the
wheels start jumping?

This problem is somewhat similar to the previous one, and
we would be able to solve it using those ideas which we have
already studied. Indeed, if we consider the process in a frame
co-moving with the cart, we can just apply Newton’s 2nd law
to the centripetal acceleration of the wheel’s centre of mass.
However, let us solve it using few more ideas.

idea 10: Gravity force (or a fictitious force which is propor-
tional to the mass of a body) can be considered to be applied
to the centre of mass of a body only in the following cases:
(a) the effective gravity field is homogeneous;
(b) the body has a spherically symmetric mass distribution;
(c) the effective gravity field is proportional to the radius vec-
tor, e.g. centrifugal force field if the motion is constrained to
the plane perpendicular to the frame’s axis of rotation.
In all the other cases, it may happen by coincidence that the
gravity force is still applied to the centre of mass, but typically
it is not. For instance, the Coriolis force can be considered to
be applied to the centre of mass only if the body is not rotating
(as seen from the rotating frame).

The part (a) of this claim has been motivated in the paragraph
following the idea 9; parts (b) and (c) will be motivated in the
booklet of electromagnetism (electrostatic and non-relativistic
gravitational fields obey similar laws). In order to prove that
the part (d) is valid, we need to show that total force and
total torque exerted by the gravitational have the same mag-
nitudes what would be obtained if the body were a point mass
at the position of the centre of mass. So, using the attrac-
tion(repulsion) centre as the origin and assuming g⃗ = kr⃗, let
us express the total torque as T⃗ = r⃗i

∑
kmir⃗i × r⃗i ≡ 0; the

same result would be obtained for a centre of mass as the grav-
ity force would have a zero arm. Further, let us express the
total force as F⃗ =

∑
kmir⃗i = kM(

∑
mir⃗i/M) = kMr⃗C ; here

M =
∑

mi is the total mass of the body.
There are two more ideas which can be used here,

idea 11: In order to achieve a more symmetric configura-
tion or to make the situation simpler in some other way, it is
sometimes useful to represent a region with zero value of some

quantity as a superposition of two regions with opposite signs
of the same quantity.

This quantity can be mass density (like in this case), charge
or current density, some force field etc. Often this trick can be
combined with

idea 12: Make the problem as symmetric as possible.

This goal can be reached by applying idea 11, but also by us-
ing appropriate reference frames, dividing the process of solv-
ing into several phases (where some phases use symmetric geo-
metry), etc.

pr 8. A hollow cylinder with mass m and radius R stands
on a horizontal surface with its smooth flat end in contact the
surface everywhere. A thread has been wound around it and
its free end is pulled with velocity v in parallel to the thread.
Find the speed of the cylinder. Consider two cases: (a) the
coefficient of friction between the surface and the cylinder is
zero everywhere except for a thin straight band (much thinner
than the radius of the cylinder) with a coefficient of friction
of µ, the band is parallel to the thread and its distance to the
thread a < 2R (the figure shows a top-down view); (b) the
coefficient of friction is µ everywhere. Hint: any planar motion
of a rigid body can be viewed as rotation around an instant
centre of rotation, i.e. the velocity vector of any point of the
body is the same as if the instant centre were the real axis of
rotation.

v

a

µ

This is quite a hard problem. It is useful to note

idea 13: if a body has to move with a constant velocity, then
the problem is about statics.

Also remember ideas 1 and 2. The latter can be replaced with
its consequence,

idea 14: if a body in equilibrium is acted on by three forces
at three separate points, then their lines of action intersect at
one point (note that the intersection point can be infinitely far
— lines intersecting at infinity means that the lines are parallel
to each other). If there are only two points of action, then the
corresponding lines coincide.

This very useful idea follows directly from the torque balance
condition if the intersection point of two lines of action is taken
for the pivot point (with two arms and the total torque being
equal to zero, the third arm must be also equal to zero).

Another useful fact is

fact 21: the friction force acting on a given point is always
antiparallel to the velocity of the point in the frame of reference
of the body causing the friction.

From time to time some mathematical tricks are also of use;
here it is the property of inscribed angles, and more specifically
the particular case of the Thales’ theorem (among geometrical
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theorems, this is probably the most useful one for solving phys-
ics problems),

fact 22: a right angle is subtended by a semicircle (in general:
an inscribed angle in radians equals half of the ratio between
its arc-length and radius).

The property of inscribed angles is also useful in the next
problem, if we add (somewhat trivial)

idea 15: in stable equilibrium the potential energy of a body
is minimum.

pr 9. A light wire is bent into a right angle and a heavy
ball is attached to the bend. The wire is placed onto supports
with height difference h and horizontal distance a. Find the
position of the wire in its equilibrium. Express the position as
the angle between the bisector of the right angle and the ver-
tical. Neglect any friction between the wire and the supports;
the supports have little grooves keeping all motion in the plane
of the wire and the figure.

α

a

h

pr 10. A rod with length l is hinged to a ceiling with height
h < l. Underneath, a board is being dragged on the floor. The
rod is meant to block the movement the board in one direction
while allowing it move in the opposite direction. What condi-
tion should be fulfilled for it to do its job? The coefficient of
friction is µ1 between the board and the rod, and µ2 between
the board and the floor.

α

µ1
µ2

Let’s remember fact 6: if the relative sliding between two
bodies has a known direction then the direction of the sum of
the friction and reaction force vectors is always uniquely de-
termined by the coefficient of friction. If a force makes one of
the bodies move in such a way that the reaction force grows
then they jam: the larger the forces we try to drag the bodies
with, the larger friction and reaction forces restrain them.

idea 16: Friction can block movement. In such a case, all
forces become negligible except for the friction force, reaction
force and the externally applied force that tries to make the
system move, because gravitational (and such) forces are fixed,
but the said forces become the larger the harder we push or
pull.

pr 11. Four long and four half as long rods are hinged to
each other forming three identical rhombi. One end of the con-
traption is hinged to a ceiling, the other one is attached to a
weight of mass m. The hinge next to the weight is connected
to the hinge above by a string. Find the tension force in the
string.

m

This problem is the easiest to solve using the method of
virtual displacement.

method 1: Imagine that we are able to change the length of

the string or rod the tension in which is searched for by an in-

�nitesimal amount ∆x. Equating the work T∆x by the change

∆Π of the potential energy, we get T = ∆Π/∆x.

Generalisation: if some additional external forces F⃗i (i =
1, 2, . . .) act on the system with the displacements of their
points of action being δx⃗i, while the interesting string or rod
undergoes a virtual lengthening of ∆x, then

T = (∆Π −
∑

i

δx⃗i · F⃗i)/∆x.

The method can also be used for finding some other forces
than tension (for example, in problems about pulleys): by ima-
ginarily shifting the point of action of the unknown force one
can find the projection of this force onto the direction of the
virtual displacement.

pr 12. A rope with mass m is hung from the ceiling by its
both ends and a weight with mass M is attached to its centre.
The tangent to the rope at its either end forms angle α with
the ceiling. What is the angle β between the tangents to the
rope at the weight?

α α

β
m

M

Let us recall the fact 14: The tension in a freely hanging
string is directed along the tangent to the string. In addition,
we can employ

idea 17: for hanging ropes, membranes etc. it is usefult to
consider a piece of rope separately and think about the com-
ponentwise balance of forces acting onto it.

In fact, here we do not need the idea as a whole, but, rather,
its consequence,

fact 23: the horizontal component of the tension in a massive
rope is constant.

Using the idea 17 and fact 23, it is relatively easy to show that
the following approximation is valid.

idea 18: If the weight of a hanging part of a rope is much less
than its tension then the curvature of the rope is small and its
horizontal mass distribution can quite accurately be regarded
as constant.

This allows us to write down the condition of torque balance
for the hanging portion of the rope (as we know the horizontal
coordinate of its centre of mass). The next problem illustrates
that approach.

pr 13. A boy is dragging a rope with length L = 50 m along
a horizontal ground with a coefficient of friction of µ = 0.6,
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holding an end of the rope at height H = 1 m from the ground.
What is the length l of the part of the rope not touching the
ground?

pr 14. A light rod with length l is hinged in such a way
that the hinge folds in one plane only. The hinge is spun with
angular speed ω around a vertical axis. A small ball is fixed to
the other end of the rod. (a) Find the angular speeds for which
the vertical orientation is stable. (b) The ball is now attached
to another hinge and, in turn, to another identical rod (see the
figure below); the upper hinge is spun in the same way. What
is now the condition of stability for the vertical orientation?

ω ω

a) b)

l

l
l

Here the following idea is to be used.

idea 19: For analysing stability of an equilibrium, there are
two options.
First, presume that the system deviates a little from the equi-
librium, either by a small displacement ∆x or by a small angle
∆φ, and find the direction of the appearing force or torque —
whether it is towards the equilibrium or away from it.
Second, express the change of total potential energy in terms of
the small displacement to see if it has a minimum or maximum
(for a system at equilibrium, its potential energy must have an
extremum); minimum corresponds to stability, and maximum
— to instability (for a motivation and generalization of this
method, see appendix 5).

NB! compute approximately: when working with forces
(torques), it is almost always enough to keep only those terms
which are linear in the deviation; when working with potential
energy, quadratic approximation is to be used.

It is extremely important in physics to be able to apply linear,
quadratic, and sometimes also higher order approximations,
which is based on

idea 20: Taylor series:

f(x + ∆x) ≈ f(x) + f ′(x)∆x + f ′′(x)∆x2

2
+ . . . ,

for instace: sin φ ≈ tan φ ≈ φ; cos φ ≈ 1 − x2

2 ; ex ≈ 1 + x + x2

2 ,
(1 + x)a ≈ 1 + ax + a(a−1)

2 x2, ln 1 + x ≈ 1 + x − x2

2 . Ana-
logous approach can be use for multivariable expressions, e.g.
(x + ∆x)(y + ∆y) ≈ xy + x∆y + y∆x. Consider using such
approximations wherever initial data suggest some parameter
to be small.

The case (b) is substantially more difficult as the system
has two degrees of freedom (for example, the deviation angles
∆φ1 and ∆φ2 of the rods). Although idea 19 is generalisable
for more than one degrees of freedom, apparently it is easier to
start from idea 15.

idea 21: The equilibrium x = y = 0 of a system having
two degrees of freedom is stable if (and only if23) the potential

energy Π(x, y) as a function of two variables has a local min-
imum at x = y = 0, i.e. for any pair of values x, y within a
small neigbourhood of the equilibrium point (0, 0), inequality
Π(x, y) > Π(0, 0) must hold.

pr 15. If a beam with square cross-section and very low
density is placed in water, it will turn one pair of its long op-
posite faces horizontal. This orientation, however, becomes
unstable as we increase its density. Find the critical dens-
ity when this transition occurs. The density of water is
ρw = 1000 kg/m3.

idea 22: The torque acting on a body placed into a liquid
is equal to torque from buoyancy, if we take the latter force to
be acting on the centre of the mass of the displaced liquid.

The validity of the idea 22 can be seen if we imagine that the
displaced volume is, again, filled with the liquid, and the body
itself is removed. Then, of course, the re-filled volume is at
equilibrium (as it is a part of the resting liquid). This means
that the torque of the buoyancy force must be balancing out
the torque due to the weight of the re-filled volume; the weight
of the re-filled volume is applied to its centre of mass, and ac-
cording to the idea 14, the buoyancy force must be therefore
also acting along the line drawn through the centre of mass.

Apart from the idea 22, solution of the problem 15 can be
simplified by using the ideas 11 and 12.

pr 16. A hemispherical container is placed upside down on
a smooth horizontal surface. Through a small hole at the bot-
tom of the container, water is then poured in. Exactly when
the container gets full, water starts leaking from between the
table and the edge of the container. Find the mass of the con-
tainer if water has density ρ and radius of the hemisphere is
R.

M

̺ R

idea 23: If water starts flowing out from under an upside
down container, normal force must have vanished between the
table and the edge of the container. Therefore force acting on
the system container+liquid from the table is equal solely to
force from hydrostatic pressure.

The latter is given by pS, where p is pressure of the liquid near
the tabletop and S is area of the container’s open side.

pr 17. A block is situated on a slope with angle α, the
coefficient of friction between them is µ > tan α. The slope is
rapidly driven back and forth in a way that its velocity vec-
tor u⃗ is parallel to both the slope and the horizontal and has
constant modulus v; the direction of u⃗ reverses abruptly after
each time interval τ . What will be the average velocity w of
the block’s motion? Assume that gτ ≪ v.

23We assume that apart from the energy, there are no other conserved quantities for this system.
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idea 24: If the system changes at high frequency, then it
is often pratical to use time-averaged values ⟨X⟩ instead of
detailed calculations. In more complicated situations a high-
frequency component X̃ might have to be included (so that
X = ⟨X⟩ + X̃).

method 2: (perturbation method) If the impact of some force

on a body's motion can be assumed to be small, then solve the

problem in two (or more) phases: �rst �nd motion of the body

in the absence of that force (so-called zeroth approximation);

then pretend that the body is moving just as found in the �rst

phase, but there is this small force acting on it. Look what cor-

rection (so-called �rst correction) has to be made to the zeroth

approximation due to that force.

In this particular case, the choice of zeroth approximation
needs some explanation. The condition gτ ≪ v implies that
within one period, the block’s velocity cannot change much.
Therefore if the block is initially slipping downwards at some
velocity w and we investigate a short enough time interval,
then we can take the block’s velocity to be constant in zeroth
approximation, so that it is moving in a straight line. We can
then move on to phase two and find the average value of fric-
tional force, based on the motion obtained in phase one.

For problem 17, recall also a lesson from kinematics,

idea K-7 If friction a�ects the motion then usually the most ap-

propriate frame of reference is that of the environment causing

the friction.

pr 18. Let us investigate the extent to which an iron de-
posit can influence water level. Consider an iron deposit at
the bottom of the ocean at depth h = 2 km. To simplify our
analysis, let us assume that it is a spherical volume with ra-
dius 1 km with density greater from the surrounding rock by
∆ρ = 1000 kg/m3. Presume that this sphere touches the bot-
tom of the ocean with its top, i.e. that its centre is situated at
depth r +h. By how much is the water level directly above the
iron deposit different from the average water level?

iron 
deposit

r

h

idea 25: The surface of a liquid in equilibrium takes an equi-
potential shape, i.e. energies of its constituent particles are the
same at every point of the surface.

If this was not the case, the potential energy of the liquid could
be decreased by allowing some particles on the surface to flow
along the surface to where their potential energy is smaller (cf.
idea 15). Recall also the fact 10.

pr 19. A horizontal platform rotates around a vertical axis
at angular velocity ω. A disk with radius r can freely rotate
and move up and down frictionlessly along a vertical axle which
is fixed to a distance d > r from the platform’s axis. The disk
is pressed against the rotating platform due to gravity, the
coefficient of friction between them is µ. Find the angular ve-
locity acquired by the disk. Assume that pressure is distributed
evenly over the entire base of the disk.

d
R

ω

r

idea 26: If we transform into a rotating frame of reference,
then we can add angular velocities about instantaneous axes of
rotation in the same way as we usually add velocities.

Thus ω⃗3 = ω⃗1+ω⃗2, where ω⃗1 is angular velocity of the reference
frame, ω⃗2 angular velocity of the body in the rotating frame of
reference and ω⃗3 that in the stationary frame. In this question,
we can use fact 21, ideas 2, 9, 13, K-7, and also

idea K-33 Arbitrary motion of a rigid body can be considered

as rotation about an instantaneous centre of rotation (in terms

of velocity vectors of the body).

method 3: (di�erential calculus) Divide the object into in-

�nitesimally small bits or the process into in�nitesimally short

periods (if necessary, combine this with idea 20).

Within an infinitesimal bit (period), quantities changing in
space (time) can be taken constant (in our case, that quantity
is the direction of frictional force vector). If necessary (see the
next question), these quantities may be summed over all bits
— this is called integration.

pr 20. A waxing machine consists of a heavy disk with mass
M densely covered with short bristles on one side, so that if
it lies on the floor, then its weight is evenly distributed over
a circular area with radius R. An electrical motor makes the
disk rotate at angular velocity ω, the user compensates for the
torque from frictional forces by a long handle. The same handle
can be used to push the machine back and forth along the floor.
With what force does the machine have to be pushed to make
it move at velocity v? Assume that angular velocity of the disk
is large, ωR ≫ v, and that the force needed to compensate for
the torque can be neglected. The coefficient of friction between
the bristles and the floor is µ.

Here we need fact 21, ideas K-33, 11, and additionally

idea 27: Try to determine the region of space where forces
(or torques etc) cancel at pairs of points.

These pairs of points are often symmetrically located. Idea 12
is relevant as well.

pr 21. A hexagonal pencil lies on a slope with inclination
angle α; the angle between the pencil’s axis and the line of
intersection of the slope and the horizontal is φ. Under what
condition will the pencil not roll down?
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α

ϕ

idea 28: When solving three-dimensional problems, some-
times calculating coordinates in appropriately chosen axes and
applying formulae of spatial rotations can be of use. For the
rotation around z-axis by angle φ, x′ = x cos φ − y sin φ and
y′ = y cos φ + x sin φ.

What (which vector) could be expressed in terms of its compon-
ents in our case? The only promising option is the small shift
vector of centre of mass when its starts to move; ultimately we
are only interested in its vertical component.

pr 22. A slippery cylinder with radius R has been tilted
to make an angle α between its axis and the horizontal. A
string with length L has been attached to the highest point P

of some cross-section of the cylinder, the other end of it is tied
to a weight with mass m. The string takes its equilibrium po-
sition, how long (l) is the part not touching the cylinder? The
weight is shifted from its equilibrium position in such a way
that the shift vector is parallel to the vertical plane including
the cylinder’s axis; what is the period of small oscillations?

α
l

P

idea 29: Unfolding a part of the surface of a three-
dimensional object and looking at the thereby flattened surface
can assist in solving problems, among other things it helps to
find shortest distances.

pr 23. A uniform bar with mass m and length l hangs on
four identical light wires. The wires have been attached to the
bar at distances l

3 from one another and are vertical, whereas
the bar is horizontal. Initially, tensions are the same in all
wires, T0 = mg/4. Find tensions after one of the outermost
wires has been cut.

l

l/3

idea 30: If more fixing elements (rods, strings, etc) than the
necessary minimum have been used to keep a body in static
equilibrium (i.e. more than the number of degrees of freedom)
and fixing elements are absolutely rigid, then tensions in the
elements cannot be determined. In order to make it possible,
the elements have to be considered elastic (able to deform);
recall the fact 13.

Let us note that this statement is in accordance with fact 18
that gives the number of available equations (there can be no
more unknowns than equations). In this particular case, we
are dealing with effectively one-dimensional geometry with no
horizontal forces, but the body could rotate (in absence of the
wires). Thus we have two degrees of freedom, corresponding to
vertical and rotational motion. Since the wires are identical,
they must have the same stiffness as well; the word “wire” hints
at large stiffness, i.e. deformations (and the inclination angle
of the bar) are small.

4 DYNAMICS
A large proportion of dynamics problems consist of finding the
acceleration of some system of bodies, or finding the forces act-
ing upon the bodies. There are several possible approaches for
solving such problems, here we consider three of them.

method 4: For each body, we �nd all the forces acting on

it, including normal forces and frictional forces24, and write

out Newton's 2nd law in terms of components (i.e. by project-

ing the equation on x, y, and possibly z-axes). NB! Select the

directions of the axes carefully, cf. idea 1. In some cases, it

may be possible (and more convenient) to abstain from using

projections and work with vectorial equalities.

Keep in mind that for a correctly posed problem, it should be
possible to write as many linearly independent equations as
there are unknowns (following idea 1 may help to reduce that
number). The guideline for figuring out how many equations
can be found remains the same as in the case of statics prob-
lem, see idea 18 (for time being we consider problems where
bodies do not rotate, so we need to count only the translational
degrees of freedom). If the number of equations and the num-
ber of unknowns don’t match, it is either an ill-posed problem,
or you need to make additional physical assumptions (like in
the case of problem 23).

pr 24. A block with mass M lies on a slippery horizontal
surface. On top of it there is another block with mass m which
in turn is attached to an identical block by a string. The string
has been pulled across a pulley situated at the corner of the
big block and the second small block is hanging vertically. Ini-
tially, the system is held at rest. Find the acceleration of the
big block immediately after the system is released. You may
neglect friction, as well as masses of the string and the pulley.

M

m

m

This question can be successfully solved using method 4,
but we need three more ideas.

idea 31: If a body is initially at rest, then its shift vector
is parallel to the force acting on it (and its acceleration) right
after the start of its motion.

idea 32: If bodies are connected by a rope or a rod or per-
24It is convenient to make a sketch and draw all the force vectors from their application points.
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haps a pulley or one is supported by the other, then there is
a linear25 arithmetic relation between the bodies’ shifts (and
velocities, accelerations) that describes the fact that length of
the string (rod, etc.) is constant.

The relation for shifts is usually the easiest to find; if the mo-
tion is along a straight line, this relation can be differentiated
once or twice with respect to time, to obtain the relation for
velocities or accelerations. For curved motion care needs to be
taken. In the case of velocities and for rigid bodies, we result
in the idea K-35 (for two points of a rigid body, the projections
of velocities of both points on the line connecting them are
equal). In the case of accelerations, situation is more complic-
ated as there will be also centripetal accelerations. However, if
the motion starts from the rest, for a very short time period t

we can assume that the acceleration is constant and the cent-
ripetal acceleration v2/r is negligible (the speed v is still very
small), hence there is a simple linear relation s⃗ = t2

2 a⃗ between
the shift s⃗ and the acceleration a⃗ of a certain point of a certain
body; then the factor t2

2 cancels out from the linear relation for
the shifts, so that it carries directly over to the accelerations.

idea 33: If a light rope is thrown over an ideal pulley (both
of negligible mass) then tension in the rope has the same mag-
nitude to either side of the pulley; if the rope bends at the
pulley, there is a normal force between the pulley and the rope
which can be found as the vectorial sum of the tension forces.

Indeed, consider that piece of rope which is in contact with the
pulley; its mass can be neglected, hence the inertial term in the
Newton’s 2nd law can be also neglected, hence the normal force
acting on the rope must be equal and opposite to the vectorial
sum of the tension forces.

method 5: Otherwise the same as method 4, but motion

is investigated in a non-inertial frame of reference (see idea 7)

where one of the bodies is at rest.

Method 5 is useful in many questions concerning wedges: it is
difficult to write out the condition for an object to stay on the
wedge in the laboratory frame. Applying idea 32 is also often
easier in the wedge’s frame of reference than in the laboratory
frame. Don’t forget that the body defining the reference frame
is at rest: we have one or more equations expressing its static
equilibrium.

pr 25. A wedge has been made out of a very light and slip-
pery material. Its upper surface consists of two slopes making
an angle α with the horizontal and inclined towards one an-
other. The block is situated on a horizontal plane; a ball with
mass m lies at the bottom of the hole on its upper surface. An-
other ball with mass M is placed higher than the first ball and
the system is released. On what condition will the small ball
with mass m start slipping upwards along the slope? Friction
can be neglected.

M

m

α α

The final method is based on using generalised coordinates
and originates from analytical mechanics. There, it is known
as Lagrangian formalism and is introduced using relatively
advanced mathematical apparatus (partial derivatives, vari-
ational analysis), but for most problems, its simplified version
outlined below will suffice. More detailed discussion of the
Lagrangian formalism is provided in appendix 6.

method 6: Let us call ξ a generalised coordinate if the en-

tire state of a system can be described by this single number.

Say we need to �nd the acceleration ξ̈ of coordinate ξ. If we

can express the potential energy Π of the system as a func-

tion Π(ξ) of ξ and the kinetic energy in the form K = Mξ̇2/2
where coe�cient M is a combination of masses of the bodies

(and perhaps of moments of inertia), then

ξ̈ = −Π′(ξ)/M.

Here, a dot denotes differentiation w.r.t. time and dash
w.r.t. coordinate ξ. Indeed, due to conservation of energy
Π(ξ) + Mξ̇2/2 =Const. Differentiating that w.r.t. time and
using the chain rule, we obtain Π′(ξ)ξ̇ + Mξ̇ξ̈ = 0. We reach
the aforementioned formula after dividing through by ξ̇.

pr 26. A small block with mass m lies on a wedge with
angle α and mass M . The block is attached to a rope pulled
over a pulley attached to the tip of the wedge and fixed to a
horizontal wall (see the figure). Find the acceleration of the
wedge. All surfaces are slippery (there is no friction).

m

α

M

a = ?

Full solution of this problem is given in the hints’ section
to illustrate method 6

pr 27. A wedge with mass M and acute angles α1 and α2
lies on a horizontal surface. A string has been drawn across
a pulley situated at the top of the wedge, its ends are tied to
blocks with masses m1 and m2. What will be the acceleration
of the wedge? There is no friction anywhere.

m2
m1

α1 α2

M

It may seem that there is more than one degree of freedom
in this question: the wedge can move and the string can shift
w.r.t. the wedge. However, we are saved by

idea 34: If x-components of the sum of external forces and
of centre of mass velocity are both zero, then the x-coordinate
of the centre of mass remains constant.

25It is linear in shifts but may contain coefficients which are expressed in terms of nonlinear functions, e.g. trigonometric functions of angles.
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We can use this circumstance to reduce the effective number
of degrees of freedom. In our particular case, the system con-
sists of two components and thus the shift of component can
be expressed by that of the other.

idea 35: The x-coordinate of the centre of mass of a system
of bodies is

XC =
∑

ximi/
∑

mi,

where mi denotes mass of the i-th component and xi the co-
ordinate of its centre of mass. The formula can be rewritten in
integral form, XC =

∫
xdm/

∫
dm, where dm = ρ(x, y, z)dV is

differential of mass.

pr 28. Two slippery horizontal surfaces form a step. A block
with the same height as the step is pushed near the step, and a
cylinder with radius r is placed on the gap. Both the cylinder
and the block have mass m. Find the normal force N between
the cylinder and the step at the moment when distance between
the block and the step is

√
2r. Initially, the block and the step

were very close together and all bodies were at rest. Friction
is zero everywhere. Will the cylinder first separate from the
block or the step?

√−

2 rm

m

r

It is easy to end up with very complicated expressions when
solving this problem, this may lead to mistakes. Therefore it
is wise to plan the solution carefully before writing down any
equations.

idea 36: Newton’s laws are mostly used to find acceleration
from force, but sometimes it is clever to find force from accel-
eration.

But how to find acceleration(s) in that case? It is entirely
possible if we use method 6, but this path leads to long ex-
pressions. A tactical suggestion: if you see that the solution is
getting very complicated technically, take a break and think if
there is an easier way. There is a “coincidence” in this partic-
ular problem: straight lines drawn from the sphere’s centre to
points of touching are perpendicular; can this perhaps help? It
turns out that it does.

idea 37: Pay attention to special cases and use simplifications
that they give rise to!

Let us remind what we learned in kinematics:

idea K-34 In case of motion along a curve, the radial compon-

ent (perpendicular to the trajectory) of a point's acceleration

v2/R is determined by velocity v and radius of curvature R; the

component along the trajectory is linear acceleration (equal to

εR in case of rotational motion, ε is angular acceleration).

The centre of mass of the cylinder undergoes rotational mo-
tion, method 6 is necessary to find angular acceleration — but
we hoped to refrain from using it. An improvement on idea 1
helps us out:

idea 38: Project Newton’s 2nd law on the axis perpendicular
to an unwanted vector, e.g. an unknown force or the tangential
component of acceleration.

We can easily find the cylinder’s velocity (and thus the radial
component of acceleration) if we use

idea 39: If energy is conserved (or its change can be calcu-
lated from work done etc), write it out immediately. Energy is
conserved if there is no dissipation (friction, inelastic collisions
etc) and external forces acting on the system are static (e.g. a
stationary inclined plane);

forces changing in time (force acting on a moving point, moving
inclined plane) change energy as well. Idea 32 helps to write
out conservation of energy (relation between bodies’ velocit-
ies!). To answer the second question, we need

idea 40: Normal force vanishes at the moment when a body
detaches from a surface.

Also, review idea 32 for horizontal components of accelerations.

pr 29. Light wheels with radius R are attached to a heavy
axle. The system rolls along a horizontal surface which sud-
denly turns into a slope with angle α. For which angles α will
the wheels move without lifting off, i.e. touch the surface at all
times? Mass of the wheels can be neglected. The axle is par-
allel to the boundary between horizontal and sloped surfaces
and has velocity v.

m

α

v

idea 41: To answer the question whether a body lifts off,
we have to find the point on the non-lifting-off trajectory with
smallest normal force.

If normal force has to be negative at that point, then the body
lifts off; the critical value is zero — compare with idea 40).
Also, review ideas 1, 39 and K29.

pr 30. A block with mass M lies on a horizontal slippery
surface and also touches a vertical wall. In the upper surface
of the block, there is a cavity with the shape of a half-cylinder
with radius r. A small pellet with mass m is released at the
upper edge of the cavity, on the side closer to the wall. What
is the maximum velocity of the block during its subsequent
motion? Friction can be neglected.

r

m

M

idea 42: Conservation law can hold only during some period
of time.
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idea 43: Momentum is conserved if the sum of external
forces is zero; sometimes momentum is conserved only along
one axis.

You will also need idea 39.

idea 44: Velocity is maximal (or minimal) when accelera-
tion (and net force) is zero (since 0 = dv

dt = a); shift is extremal
when velocity is zero. Possible other pairs: electrical charge
(capacitor’s voltage)-current, current-inductive emf, etc.

pr 31. A light rod with length 3l is attached to the ceiling
by two strings with equal lengths. Two balls with masses m

and M are fixed to the rod, the distance between them and
their distances from the ends of the rod are all equal to l. Find
the tension in the second string right after the first has been
cut.

m

l

M

ll

There are several good solutions for this problem, all of which
share applying idea 36 and the need to find the angular ac-
celeration of the rod. Firstly, angular acceleration of the rod
can be found from method 6 by choosing angle of rotation φ to
be the generalised coordinate. Secondly, we may use Newton’s
2nd law for rotational motion: we find the torque on the rod
about the point of attachment of the second string and equate
it to Iε with angular acceleration ε and moment of inertia
I = ml2 + 4Ml2. More generally,

idea 45: When a body is rotating around the axis s, the net
torque it experiences is M = Iε (not to be confused with the
body’s mass), where I is its moment of inertia with respect to
the axis s, I =

∑
mir

2
i =

∫
r2 · dm =

∫
r2ρ · dV and ri is the

distance of i-th particle from the axis s (the sum is evaluated
over all particles of the body). Kinetic energy is K = 1

2 Iω2.

Once the angular acceleration is found, in order to apply the
idea 36 it may be helpful to use

idea 46: The more general and sometimes indispensable
form of Newton’s 2nd law is F⃗ = dP⃗

dt , where P⃗ is the net mo-
mentum of the system and F⃗ is the sum of external forces
acting on the system. An analogous formula is M⃗ = dL⃗

dt , where
L⃗ is the net angular momentum of the system (with respect to
a given point) and M⃗ is the sum of external torques.

In our case this last method is fruitful when applied both to
forces and torques.

Another solution method is to consider the rod and the
balls as three different (interacting) bodies. Then the balls’
accelerations can be found as per idea 32; one can also employ

idea 47: Net force and torque acting on very light bodies
(compared to other bodies) are zero.

Clearly if this were not true, a non-zero force would generate
an infinite acceleration for a massless body.

pr 32. An inextensible rough thread with mass per unit
length ρ and length L is thrown over a pulley such that the
length of one hanging end is l. The pulley is comprised of a
hoop of mass m and radius R attached to a horizontal axle
by light spokes. The initially motionless system is let go. Find
the force on the axle immediately after the motion begins. The
friction between the pulley and the axle is negligible.

R

Why not proceed as follows: to find the force, we will use idea
36; the acceleration of the system will be found using Method
6. To apply idea 36 most handily, let us employ

idea 48: Newton’s 2nd law can be written as F⃗ = Ma⃗C ,
where a⃗C is the acceleration of the centre of mass.

This idea is best utilised when a part of the system’s mass is
motionless and only a relatively small mass is moved about
(just like in this case: the only difference after a small period
of time is that a short length of thread is “lost” at one end
and “gained” at the other end). Obviously idea 34 will be use-
ful here, and idea 11 will save you some effort. Bear in mind
that in this case we are not interested in the centre of mass
coordinate per se, but only in its change as a function of time;
therefore in the expression for this coordinate we can omit the
terms that are independent of time: their time derivatives will
vanish. The time-dependent part of the centre of mass coordin-
ate should be expressed using the same coordinate that we will
use with Method 6 (since Method 6 will produce its second
derivative with respect to time). A technical bit of advice may
help: a vector is specified by (a) its magnitude and direction;
(b) its projections onto coordinate axes in a given coordinate
system;

idea 49: sometimes it is easier to compute the components
of a vector, even if we are interested in its magnitude only.

Above all, this applies when the direction of the vector is
neither known nor apparent. In this instance, we should find
Fx and Fy in a suitable coordinate system.

pr 33. A thread is thrown over a pulley. At its both ends
there are two blocks with equal masses. Initially the two blocks
are at the same height. One of them is instantaneously given a
small horizontal velocity v. Which of the two blocks will reach
higher during the subsequent motion? The pulley’s mass is
negligible.

v
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This problem is really tough, because the key to the solution
is a very specific and rarely used

idea 50: If the centre of mass of a system cannot move, then
the net force acting on it is zero.

Here the centre of mass can move about a little bit, but in the
longer term (averaged over one period of the pendulum-like
motion of the kicked block — cf. idea 24) it is motionless: the
blocks have the same mass and if one of them rises, then in
the expression for the centre of mass this will be compensated
by the descent of the other block. This is also true for the
horizontal coordinate of the centre of mass, but it is enough to
consider the vertical coordinate only to solve the problem. Let
us also bring up the rather obvious

fact 24: the tension in a weightless thread thrown over a
weightless pulley or pulled along a frictionless surface is the
same everywhere.

The solution algorithm is then as follows: we write down New-
ton’s 2nd law for (a) the system made out of two blocks and
(b) one block; we average both equations and use the equality
apparent from (a) to find the average tension in the thread,
which we then substitute into equation (b). Based on idea 24,
we partition the tension in the thread into the average and the
high-frequency component and use idea 20.

pr 34. A system of blocks sits on a smooth surface, as shown
in the figure. The coefficient of friction between the blocks is
µ, while that between the blocks and the surface is µ = 0.

m m

x

M M
F

The bottom right block is being pulled by a force F . Find the
accelerations of all blocks.

idea 51: When bodies are connected by frictional forces, then
to answer some questions fully one needs to consider all pos-
sible combinations of there being relative slipping between all
possible touching surfaces.

For example, if we are to assume that there is no slipping
between two touching bodies, then they could be treated as
a whole. Then one should find the frictional force Fh between
the bodies and determine when the assumption holds, or when
is Fh less that the maximum static friction force µN .

pr 35. A billiard ball hits another stationary billiard ball.
At which collection of points could the stationary ball be posi-
tioned such that it would be possible to achieve the situation
where both balls will fall into two (different) pockets on the
table? The collisions are perfectly elastic, the balls are per-
fectly slippery (hence the rotation of the balls is negligible).

idea 52: If an absolutely elastic ball hits another motion-
less identical ball and the rotation (rolling) of the balls can be
ignored, then upon impact there will be a right angle between
the velocity vectors of the two balls.

To prove this, note that the three velocity vectors (velocity be-
fore and the two velocities after the impact) form a triangle be-

cause of the momentum conservation law. The conservation of
energy means that the sides of the triangle satisfy Pythagore’s
theorem. A special case of this result is (see the problem after
next)

fact 25: When an elastic ball undergoes a central collision
with another identical stationary ball, then the first ball stops
and the second gains the velocity of the first ball.

pr 36. An absolutely elastic and slippery billiard ball is
moving with velocity v toward two motionless identical balls.
The motionless balls are touching and their centres lie on a
straight line that is perpendicular to the incoming ball’s ve-
locity vector. The moving ball is directed exactly toward the
touching point of the two balls. Which velocity will the incom-
ing ball have after the collisions? Consider two scenarios: (a)
the incoming ball hits exactly in the middle between the balls;
(b) its trajectory is a little bit off and it hits one of the station-

ary balls marginally earlier.
v

To answer the first question, it is necessary to use

idea 53: collisions (and other many-body interactions, like
the motion of balls connected by threads or springs) are easier
to treated in the centre of mass system, because in that system
the momentum conservation is the easiest to write down (the
net momentum is zero).

Also, do not forget idea 39! For the second question, let us use

idea 54: if a force acting on a body during a known time does
not change direction, then the transferred momentum has the
same direction as the force.

pr 37. n absolutely elastic beads are sliding along the fric-
tionless wire. What is the maximum possible number of col-
lisions? The sizes of the beads are negligible, and so is the
probability that more than two beads will collide at the same
time.

idea 55: Representing the process visually, e.g. with a graph,
tends to be great help.

Here is an auxiliary question: what would the elastic collision
of two balls on an x − t diagram look like?

pr 38. A plank of length L and mass M is lying on a smooth
horisontal surface; on its one end lies a small block of mass m.
The coefficient of friction between the block and the plank is µ.
What is the minimal velocity v that needs to be imparted to
the plank with a quick shove such that during the subsequent
motion the block would slide the whole length of the board
and then would fall off the plank? The size of the block is
negligible.

Lµµ= 0 m
M

v

This problem has two more or less equivalent solutions. First,
we could solve it using idea 7. Second, we could use ideas 39
and 53, further employing
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idea 56: if a body slides along a level surface, then the en-
ergy that gets converted to heat is equal to the product of the
friction force and the length of the sliding track.

Indeed, the friction force has a constant magnitude and, as seen
in the reference frame of the support, it is always parallel to
displacement.

pr 39. The given figure has been produced off a stroboscopic
photograph and it depicts the collision of two balls of equal dia-
meters but different masses. The arrow notes the direction of
motion of one of the balls before the impact. Find the ratio
of the masses of the two balls and show what the direction of
motion for the second ball was before the impact.

idea 57: sometimes it is beneficial to treat momenta as
vectors, treating their vectorial sums and differences using tri-
angle or parallelogram rules (this is also true of other vectorial
quantities: displacements, velocities, accelerations, forces etc.)

To be more specific: when two bodies interact, the vector of
the impulse is equal to the vectorial difference of their two mo-
menta. Cf. idea 5.

fact 26: In a stroboscopic photograph, the vector from one
position of the body to the next is proportional to its velocity
(vector).

fact 27: (Newton’s 3rd law) if two bodies have interacted,
the changes of momenta of the two bodies are equal and op-
posite.

pr 40. There are two barrels (A and B) whose taps have
different design, see figure. The tap is opened, the height of
the water surface from the tap is H. What velocity does the
water stream leave the barrels with?

HH

A B

idea 58: If it seems that it is possible to solve a problem
using both energy and momentum conservation, then at least
one of these is not actually conserved!

It could not be otherwise: the answers are, after all, different.
It pays to be attentive here. While designing the tap A, there
was a clear attempt to preserve the laminarity of the flow: en-
ergy is conserved. However, if, motivated by method 3, we
were to write down the momentum given to the stream by the
air pressure during an infinitesimal time dt — pSdt (where S

is the tap’s area of cross-section), we would see that, owing to
the flow of water, p ̸= ρg (cf. dynamical pressure, Bernoulli’s

law!). On the other hand, for tap B the laminar flow is not
preserved; there will be eddies and loss of energy. We could
nonetheless work with momentum: we write the expression for
the pressure exerted on the liquid by the walls of the barrel
(generally the pressures exerted by the left and the right hand
side walls of the barrel cancel each other out, but there remains
an uncompensated pressure p = ρgH exerted to the left of the
cross-section of the tap S).

pr 41. Sand is transported to the construction site using a
conveyor belt. The length of the belt is l, the angle with respect
to the horizontal is α; the belt is driven by the lower pulley with
radius R, powered externally. The sand is put onto the belt at
a constant rate µ (kg/s). What is the minimal required torque
needed to transport the sand? What is the velocity of the belt
at that torque? The coefficient of friction is large enough for
the sand grains to stop moving immediately after hitting the
belt; take the initial velocity of the sand grains to be zero.

α

µ l
R

fact 28: To make anything move — bodies or a flow (e.g. of
sand) — force needs to be exerted.

For this problem, idea 58 and methode 3 will come in handy
in addition to

idea 59: (the condition for continuity) for a stationary flow
the flux of matter (the quantity of stuff crossing the cross-
section of the flow per unite time) is constant and is independ-
ent of the cross-section: σv = Const [σ(x) is the matter density
per unit distance and v(x) — the velocity of the flow].

For a flow of incompressible (constant density) liquid in a pipe,
such a density is σ = ρS and therefore vS = Const. For a re-
gion of space where the flow is discharged — a sink — the mass
increases: dm

dt = σv — this equation, too, could be called the
condition for continuity.

pr 42. A ductile blob of clay falls against the floor from
the height h and starts sliding. What is the velocity of the
blob at the very beginning of sliding if the coefficient of fric-
tion between the floor and the blob is µ? The initial horizontal
velocity of the blob was u.

idea 60: If during an impact against a hard wall there is
always sliding, then the ratio of the impulses imparted along
and perpendicular to the wall is µ.

Indeed, ∆p⊥ =
∫

N(t)dt (integrated over the duration of the
impact) and ∆p∥ =

∫
µN(t)dt = µ

∫
N(t)dt.

pr 43. A boy is dragging a sled by the rope behind him as
he slowly ascends a hill. What is the work that the boy does
to transport the sled to the tip of the hill if its height is h and
the horizontal distance from the foot of the hill to its tip is a?
Assume that the rope is always parallel to the tangent of the
hill’s slope, and that the coefficient of friction between the sled
and the snow is µ.
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h

a

fact 29: if the exact shape of a certain surface or a time
dependence is not given, then you have to deal with the general
case: prove that the proposition is true for an arbitrary shape.

Clearly, to apply the fact 29, one will need idea 3.

pr 44. An empty cylinder with mass M is rolling without
slipping along a slanted surface, whose angle of inclination is
α = 45◦. On its inner surface can slide freely a small block
of mass m = M/2. What is the angle β between the normal
to the slanted surface and the straight line segment connecting
the centre of the cylinder and the block?

β

α m

M

Clearly the simplest solution is based on idea 6, but one needs
to calculate the kinetic energy of a rolling cylinder.

idea 61: K = Kc + MΣv2
c /2, where Kc is the kinetic energy

as seen in the centre of mass frame and MΣ — is the net mass
of the system. Analogously: P⃗ = MΣv⃗c (since P⃗c ≡ 0) and the
angular momentum L⃗ = Lc + r⃗c × P⃗ . Parallel-axis (Steiner)
theorem holds: I = I0 + MΣa2, where I is the moment of in-
ertia with respect to an axis s and I0 — that with respect to
an axis through the centre of mass (parallel to s) while a is the
distance between these two axes.

We will have to compute angular momentum already in the
next problem, so let us clarify things a little.

idea 62: Angular momentum is additive. Dividing the sys-
tem into point-like masses, L⃗ =

∑
L⃗i, where for i-th point-like

mass L⃗i = r⃗i × p⃗i (generally) or Li = hipi = ripti (motion in
a plane), hi = ri sin αi is the lever arm and pti = pi sin α — is
the tangential component of the momentum). Kinetic energy,
momentum etc. are also additive.

If in a three-dimensional space the angular momentum is a vec-
tor, for a motion in a plane this vector is perpendicular to the
plane and is therefore effectively a scalar (and thus one can
abandon cross products). It is often handy to combine ideas
61 and 62: we do not divide the system into particles but, in-
stead, into rigid bodies (L =

∑
Li), we compute the moment

of inertia Li of each body according to idea 61: the moment
of inertia of the centre of mass plus the moment of inertia as
measured in the centre of mass frame.

idea 63: Here are moments of inertia for a few bodies,
with respect to the centre of mass. A rod of length of l:
1

12 Ml2, solid sphere: 2
5 MR2, spherical shell: 2

3 MR2, cylin-
der: 1

2 MR2, square with side length a, axis perpendicular to
its plane: 1

6 Ma2.

If the the rotation axis does not go through the centre of mass,
then one can (a) find the moment of inertia with respect to

the axis of interest using the parallel-axis (Steiner) theorem;
(b) apply idea 61 to calculate kinetic energy or angular mo-
mentum (in which case it is only enough to know the moment
of inertia with respect to the centre of mass).

pr 45. A rod of mass M and length 2l is sliding on ice. The
velocity of the centre of mass of the rod is v, the rod’s angular
velocity is ω. At the instant when the centre of mass velocity
is perpendicular to the rod itself, it hits a motionless post with
an end. What is the velocity of the centre of mass of the rod
after the impact if (a) the impact is perfectly inelastic (the end
that hits the post stops moving); (b) the impact is perfectly
elastic.

v

ωM
2l

In case of an absolutely elastic collision one equation follows
from energy conservation; if the collision is inelastic, then an-
other condition arises: that of a motionless end of the rod.
Still, we have two variables. The second equation arises from

idea 64: if a body collides with something, then its angular
momentum is conserved with respect to the point of impact.

Indeed, during the impact the body’s motion is affected by the
normal and frictional forces, but both are applied through the
point of impact: their lever arm is zero. If a body is moving
in a gravitational or similar field, then in the longer term the
angular momentum with respect to the point of impact may
begin to change, but immediately before and after the colli-
sion it is nonetheless the same (gravity is not too strong as
opposed to the normal forces that are strong yet short-lived;
even though gravity’s lever arm is non-zero, it cannot change
the angular momentum in an instant).

pr 46. If one hits something rigid — e.g. a lamppost —
with a bat, the hand holding the bat may get stung (hurt) as
long as the impact misses the so-called centre of percussion of
the bat (and hits either below or above such a centre). De-
termine the position of the centre of percussion for a bat of
uniform density. You may assume that during an impact the
bat is rotating around its holding hand.

method 7: Convert a real-life problem into the formal lan-

guage of physics and math � in other words, create a model.

Phrased like that, it may seem that the method is rather point-
less. However, converting and interpreting real-life scenarios —
modelling the problem — is one of the most challenging and in-
teresting aspects of physics. It is interesting because it supplies
more creative freedom than solving an existing model using
well-established ideas. Still, this freedom has limits: the model
has to describe the reality as best as possible, the approxim-
ations have to make sense and it is desirable that the model
were solvable either mentally or with aid of a computer. For a
given problem, there is not much freedom left and the business
is simplified: there clear hints as to sensible assumptions. Let
us begin translating: “A rigid rod of length l and uniform dens-
ity is rotating around one end with the angular velocity ω, the
rotation axis is perpendicular to the rod. At a distance x from
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the axis there is a motionless post that is parallel to the axis
of rotation. The rod hits the post.” Now we encounter the first
obstacle: is the impact elastic or inelastic? This is not brought
up in the text of the problem. Let us leave it for now: maybe
we can get somewhere even without the corresponding assump-
tion (it turns out that this is the case). Now we encounter the
central question: what does it mean for the hand “not to get
stung”? We know it hurts when something hits our hand — if
this something gets an impulse from the hand during a short
period of time (the impact), as this implies a large force. The
hand is stationary, so the hand-held end of the bat should come
to halt without receiving any impulse from the hand. Thus our
interpretation of the problem is complete: “Following the im-
pact, the rotation is reversed, 0 ≥ ω′ ≥ −ω; during the impact
the axis of rotation imparts no impulse on the rod. Find x.”
The penultimate sentence hints at the usage of idea 64.

pr 47. A massive cylinder of radius R and mass M is lying
on the floor. A narrow groove of depth a has been chiselled
along the circumference of the cylinder. A thread has been
wrapped around the groove and is now being pulled by its free
end, held horizontally, with a force F . The cylinder is po-
sitioned such that the thread is being freed from below the
cylinder. With what acceleration will the cylinder start mov-
ing? The friction between the floor and the cylinder is large
enough for there to be no slipping.

F

M aR

F
⊙

There are multiple ways to tackle this problem, but let us use
the following idea.

idea 65: The relation Iε = M is clearly valid only if the
centre of rotation is motionless; however, it turns out that it
also holds when the instantaneous axis of rotation is moving
translationally such that the distance of the body’s centre of
mass from the axis does not change (eg when rolling a cyl-
indrical or spherical object).

To prove this idea, recall idea 6: kinetic energy appears when
work is done, K = 1

2 Iω2 = Mφ (φ is the angle of rotation of
the body, ω = dφ/dt). If the moment of inertia with respect to
the instantaneous axis of rotation I does not depend on time,
then dK/dt = 1

2 Idω2/dt = Iωε = dMφ/dt = Mω, which gives
Iε = M .

pr 48. A ball is rolling along a horizontal floor in the region
x < 0 with velocity v⃗0 = (vx0, vy0). In the region x > 0 there
is a conveyor belt that moves with velocity u⃗ = (0, u) (parallel
to its edge x = 0). Find the velocity of the ball v⃗ = (vx, vy)
with respect to the belt after it has rolled onto the belt. The
surface of the conveyor belt is rough (the ball does not slip)
and is level with the floor.

idea 66: For cylindrical or spherical bodies rolling or slip-
ping on a horizontal surface, the angular momentum is con-
served with respect to an arbitrary axis lying in the plane of
the surface.

Indeed, the points where the normal force and the gravity are
applied are on the same straight line with the forces themselves
and their sum is zero, meaning that their net torque is also zero;
the force of friction is lying in the plane of the surface, and so
its lever arm with respect to an axis in the same plane is zero.

pr 49. A “spring-dumbbell” comprises two balls of mass m

that are connected with a spring of stiffness k. Two such dumb-
bells are sliding toward one another, the velocity of either is v0.
At some point the distance between them is L (see fig.). After
which time is the distance between them equal to L again? The
collisions are perfectly elastic.

L

v0 v0

idea 67: If a system consisting of elastic bodies, connected by
springs, threads etc., interacts with other bodies, then the dur-
ation of impact of the elastic bodies is significantly smaller than
the characteristic times of other processes. The whole process
can then be divided into simpler stages: an almost instantan-
eous collision of elastic bodies (that could be considered free,
as e.g. the spring exerts an insignificant force compared to that
exerted in an elastic collision) and the subsequent (or preced-
ent, or in between the collisions) slow process: the oscillations
of the spring etc.

Note: this is a rather general idea, division into simpler steps
can be useful if rapid (almost instantaneous) processes can oc-
cur in a dynamical system; see next problem for an example
(also recall idea 53)

pr 50. Small grains of sand are sliding without friction along
a cylindrical trough of radius R (see fig.). The inclination angle
of the trough is α. All grains have initial velocity zero and start
near point A (but not necessarily at the point A itself). What
should be the length of the trough such that all grains would
exit it at the point B (i.e. exactly at the bottom of the trough)?

L

α

A

B

idea 68: If the motion of a spread collection of particles
could be divided into oscillation in a known direction and an
oscillation-free motion (so motion perpendicular to the oscilla-
tion), then the particles are focussed at certain points: where
the oscillation phase of all particles is either zero or is an integer
multiple of 2π.

pr 51. A coat hanger made of wire with a non-uniform
density distribution is oscillating with a small amplitude in the
plane of the figure. In the first two cases the longer side of the
triangle is horizontal. In all three cases the periods of oscilla-
tion are equal. Find the position of the centre of mass and the
period of oscillation.
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42cm

10cm

Background info: A finite-size rigid body that oscillates
around a fixed axis is known as the physical pendulum. Its
frequency of small oscillations is easy to derive from the re-
lation Iφ̈ = −mglφ, where I is the moment of inertia with
respect to the axis of oscillation and l is the distance of the
centre of mass from that axis: ω−2 = I/mgl = I0/mgl + l/g

(here we employ the parallel-axis/Steiner theorem, see idea 61).
The reduced length of the physical pendulum is the distance
l̃ = l + I0/ml such that the frequency of oscillation of a math-
ematical pendulum of that length is the same as for the given
physical pendulum.

idea 69: If we draw a straight line of length l̃ such that it
passes through the centre of mass and one of its ends is by
the axis of rotation, then if we move the rotation axis to the
other end of the segment (and let the body reach a stable equi-
librium), then the new frequency of oscillation is the same as
before. Conclusion: the set of points where the axis of rotation
could be placed without changing the frequency of oscillation,
consists of two concentric circles around the centre of mass.

Proof: the formula above could be rewritten as a quadratic
equation to find the length l corresponding to the given fre-
quency ω (i.e. to the given reduced length l̃ = g/ω2):
l2 − ll̃+I0/m = 0. According to Vieta’s formulae, the solutions
l1 and l2 satisfy l1 + l2 = l, so that l1 and l2 = l̃ − l1 result in
the same frequency of oscillations.

pr 52. A metallic sphere of radius 2 mm and density ρ =
3000 kg/m3 is moving in water, falling freely with the acceler-
ation a0 = 0,57g. The water density is ρ0 = 1000 kg/m3. With
what acceleration would a spherical bubble of radius 1 mm rise
in the water? Consider the flow to be laminar in both cases;
neglect friction.

idea 70: If a body moves in a liquid, the fluid will also move.
(A) If the flow is laminar (no eddies), only the liquid adjacent
to the body will move; (B) if the flow is turbulent, there will be
a turbulent ‘tail’ behind the body. In either case the charac-
teristic velocity of the moving liquid is the same as the velocity
of the body.

Using method 6 we find that in the case (A) the kinetic energy
of the system K = 1

2 v2(m + αρ0V ), where the constant α is a
number that characterizes the geometry of the body that cor-
respond to the extent of the region of the liquid that will move
(compared to the volume of the body itself). This expression
is obtained by noticing that the characteristic speed of the li-
quid around the body is v, and the characteristic size of the
region where the liquid moves (the speed is not much smaller
than v) is estimated as the size of the body itself. If a body is
acted on by a force F , then the power produced by this force
is P = Fv = dK

dt = va(m + αρ0V ). Thus F = a(m + αρ0V ):

the effective mass of the body increases by αρ0V . In the prob-
lem above, the constant α for the spherical body can be found
using the conditions given in the first half of the problem.

In case (B), if we assume that the velocity of the body
is constant, we find K = 1

2 v2ρ0(αSvt), where S is the cross-
sectional area of the body and αS is the cross-sectional area
of the turbulent ‘tail’. This α, again, characterizes the body.
From here, it is easy to find Fv = dK

dt = α
2 v3ρ0S, which gives

F = α
2 v2ρ0S.

pr 53. A stream of water falls against a trough’s bottom
with velocity v and splits into smaller streams going to the left
and to the right. Find the velocities of both streams if the
incoming stream was inclined at an angle α to the trough (and
the resultant streams). What is the ratio of amounts of water
carried per unit time in the two outgoing streams?

α

This is a rather hard problem. Let us first state a few ideas
and facts.

idea 71: For liquid flow, Bernoulli’s (i.e. energy conserva-
tion) law is often helpful: p + ρgh + 1

2 ρv2 = Const, where p is
the static pressure, h is the height of the considered point and
v is the velocity of the flow at that point.

fact 30: Inside the liquid close to its free surface the static
pressure is equal to the external pressure.

To solve the second half of the problem, the following is needed:

idea 72: Idea 46 can be generalized in a way that would hold
for open systems (certain amounts of matter enter and leave
the system): F⃗ = dP⃗

dt + Φ⃗P in − Φ⃗P out, where Φ⃗P in and Φ⃗P out
are the entering and the outgoing fluxes of momentum (in other
words, the net momentum of the matter entering and leaving
the system, respectively).

The momentum flux of the flowing liquid could be calculated as
the product of momentum volume density ρv⃗ with the flow rate
(volume of liquid entering/leaving the system per unit time).

What is the open system we should be considering in this
case? Clearly, a system that would allow relating the incoming
flow rate µ (kg/s) to the outgoing fluxes (µl ja µr) using the
formula above: a small imaginary region of space that would
include the region where the stream splits into two.

fact 31: If we can ignore viscosity, the component of the force
exerted by the stream bed (including the ‘walls’ limiting the
flow) on the flow that is parallel to these walls is zero.

pr 54. Find the velocity of propagation of small waves
in shallow water. The water is considered shallow if the
wavelength is considerably larger than the depth of the wa-
ter H. Thanks to this we can assume that along a vertical
cross-section the horizontal velocity of all particles vh is the
same and that the vertical velocity of water particles is signi-
ficantly smaller than the horizontal velocity. The smallness of
the waves means that their height is significantly smaller than
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the depth of the water. This allows us to assume that the ho-
rizontal velocity of the water particles is significantly smaller
than the wave velocity, u.

idea 73: A standard method for finding the velocity of
propagation (or another characteristic) of a wave (or another
structure with persistent shape) is to choose a reference system
where the wave is at rest. In this frame, (a) continuity (idea
59) and (b) energy conservation (e.g. in the form of Bernoulli’s
law) hold. In certain cases energy conservation law can be
replaced by the balance of forces.

(An alternative approach is to linearise and solve a system of
coupled partial differential equations.)

pr 55. A small sphere with mass m = 1 g is moving along a
smooth surface, sliding back and forth and colliding elastically
with a wall and a block. The mass of the rectangular block
is M = 1 kg, the initial velocity of the sphere is v0 = 10 m/s.
What is the velocity of the sphere at the instant when the dis-
tance between the sphere and the wall has doubled as compared
with the initial distance? By how many times will the average
force (averaged over time) exerted by the sphere on the wall
have changed?

idea 74: If a similar oscillatory motion takes place, for which
the parameters of the system change slowly (compared to the
period of oscillation), then the so-called adiabatic invariant I is
conserved: it is the area enclosed by the closed contour traced
by the trajectory of the system on the so-called phase diagram
(where the coordinates are the spatial coordinate x and mo-
mentum px).

Let us be more precise here. The closed contour is produced as
a parametric curve (the so-called phase trajectory) x(t), px(t)
if we trace the motion of the system during one full period T .
The phase trajectory is normally drawn with an arrow that in-
dicated the direction of motion. The adiabatic invariant is not
exactly and perfectly conserved, but the precision with which
it is conserved grows if the ratio τ/T grows, where τ is the
characteristic time of change of the system’s parameters.

Adiabatic invariant plays an instrumental role in physics:
from the adiabatic law in gases (compare the result of the pre-
vious problem with the adiabatic expansion law for an ideal
gas with one degree of freedom!) and is applicable even in
quantum mechanics (the number of quanta in the system —
e.g. photons — is conserved if the parameters of the system
are varied slowly).

5 REVISION PROBLEMS
pr 56. A straight homogeneous rod is being externally sup-

ported against a vertical wall such that the angle between the
wall and the rod is α < 90◦. For which values of α can the rod
remain stationary when thus supported? Consider two scen-
arios: a) the wall is slippery and the floor is rough with the
friction coefficient µ ; b) the floor is slippery and the wall is
rough with the friction coefficient µ.

pr 57. A light stick rests with one end against a vertical
wall and another on a horizontal floor. A bug wants to crawl

down the stick, from top to bottom. How should the bug’s
acceleration depend on its distance from the top endpoint of
the stick? The bug’s mass is m, the length of the stick is l, the
angle between the floor and the stick is α and the stick’s mass
is negligible; both the floor and the wall are slippery (µ = 0).
How long will it take the bug to reach the bottom of the stick
having started at the top (from rest)?

α

l

x

a

pr 58. A wedge with the angle α at the tip is lying on the
horizontal floor. There is a hole with smooth walls in the ceil-
ing. A rod has been inserted snugly into that hole, and it can
move up and down without friction, while its axis is fixed to
be vertical. The rod is supported against the wedge; the only
point with friction is the contact point of the wedge and the
rod: the friction coefficient there is µ. For which values of µ is
it possible to push the wedge through, behind the rod, by only
applying a sufficiently large horizontal force?

α
µ F

pr 59. Sometimes a contraption is used to hang pictures etc.
on the wall, whose model will be presented below. Against a
fixed vertical surface is an immovable tilted plane, where the
angle between the surface and the plane is α. There is a gap
between the surface and the plane, where a thin plate could
be fit. The plate is positioned tightly against the vertical sur-
face; the coefficient of friction between them can be considered
equal to zero. In the space between the plate and the plane a
cylinder of mass m can move freely, its axis being horizontal
and parallel to all considered surfaces. The cylinder rests on
the plate and the plane and the coefficients of friction on those
two surfaces are, respectively, µ1 and µ2. For which values of
the friction coefficients the plate will assuredly not fall down
regardless of its weight?

α

F

µ = 0

µ2

µ1

m

pr 60. On top of a cylinder with a horisontal axis a plank is
placed, whose length is l and thickness is h. For which radius
R of the cylinder the horizontal position of the plank is stable?

R

l
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pr 61. A vessel in the shape of a cylinder, whose height
equals its radius R and whose cavity is half-spherical, is filled
to the brim with water, turned upside down and positioned on
a horizontal surface. The radius of the half-spherical cavity is
also R and there is a little hole in the vessel’s bottom. From
below the edges of the freely lying vessel some water leaks out.
How high will the remaining layer of water be, if the mass of
the vessel is m and the water density is ρ? If necessary, use
the formula for the volume of a slice of a sphere (see Fig.):
V = πH2(R − H/3).

h
H V

pr 62. A vertical cylindrical vessel with radius R is rotating
around its axis with the angular velocity ω. By how much does
the water surface height at the axis differ from the height next
to the vessel’s edges?

pr 63. A block with mass M is on a slippery horizontal sur-
face. A thread extends over one of its corners. The thread is
attached to the wall at its one end and to a little block of mass
m, which is inclined by an angle α with respect to the vertical,
at the other. Initially the thread is stretched and the blocks
are held in place. Then the blocks are released. For which ratio
of masses will the angle α remain unchanged throughout the
subsequent motion?

α mM

pr 64. Two slippery (µ = 0) wedge-shaped inclined surfaces
with equal tilt angles α are positioned such that their sides are
parallel, the inclines are facing each other and there is a little
gap in between (see fig.). On top of the surfaces are positioned
a cylinder and a wedge-shaped block, whereas they are resting
one against the other and one of the block’s sides is horizontal.
The masses are, respectively, m and M . What accelerations
will the cylinder and the block move with? Find the reaction
force between them.

αα

Mm

pr 65. Three little cylinders are connected with weightless
rods, where there is a hinge near the middle cylinder, so that
the angle between the rods can change freely. Initially this
angle is a right angle. Two of the cylinders have mass m, an-
other one at the side has the mass 4m. Find the acceleration
of the heavier cylinder immediately after the motion begins.
Ignore friction.

90
o

m

m

4m
a=?

pr 66. A slippery rod is positioned at an angle α with re-
spect to the horizon. A little ring of mass m can slide along
the rod, to which a long thread is attached. A small sphere
of size M is attached to the thread. Initially the ring is held
motionless, and the thread hangs vertically. Then the ring is
released. What is the acceleration of the sphere immediately
after that?

α
m

M

pr 67. A block begins sliding at the uppermost point of a
spherical surface. Find the height at which it will lose contact
with the surface. The sphere is held in place and its radius is
R; there is no friction.

pr 68. The length of a weightless rod is 2l. A small sphere
of mass m is fixed at a distance x = l from its upper end. The
rod rests with its one end against the wall and the other against
the floor. The end that rests on the floor is being moved with
a constant velocity v away from the wall. a) Find the force
with which the sphere affects the rod at the moment, when the
angle between the wall and the rod is α = 45◦ ; (b) what is the
answer if x ̸= l?

α

v

m

x

2l

pr 69. A light rod with length l is connected to the hori-
zontal surface with a hinge; a small sphere of mass m is connec-
ted to the end of the rod. Initially the rod is vertical and the
sphere rests against the block of mass M . The system is left
to freely move and after a certain time the block loses contact
with the surface of the block — at the moment when the rod
forms an angle α = π/6 with the horizontal. Find the ratio of
masses M/m and the velocity u of the block at the moment of
separation.

m

l

M

pr 70. At a distance l from the edge of the table lies a block
that is connected with a thread to another exact same block.
The length of the thread is 2l and it is extended around the
pulley sitting at the edge of the table. The other block is held
above the table such that the string is under tension. Then
the second block is released. What happens first: does the first
block reach the pulley or does the second one hit the table?
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pr 71. A cylindrical ice hockey puck with a uniform thick-
ness and density is given an angular velocity ω and a transla-
tional velocity u. What trajectory will the puck follow if the
ice is equally slippery everywhere? In which case will it slide
farther: when ω = 0 or when ω ̸= 0, assuming that in both
cases u is the same?

pr 72. A little sphere of mass M hangs at the end of a very
long thread; to that sphere is, with a weightless rod, attached
another little sphere of mass m. The length of the rod is l.
Initially the system is in equilibrium. What horizontal velocity
needs to be given to the bottom sphere for it to ascend the
same height with the upper sphere? The sizes of the spheres
are negligible compared to the length of the rod.

M

mv

l

pr 73. A block of mass m lies on a slippery horizontal sur-
face. On top of it lies another block of mass m, and on top of
that — another block of mass m. A thread that connects the
first and the third block has been extended around a weight-
less pulley. The threads are horizontal and the pulley is being
pulled by a force F . What is the acceleration of the second
block? The coefficient of friction between the blocks is µ.

F
a=?

m
m
m

pr 74. A boy with mass m wants to push another boy stand-
ing on the ice, whose mass M is bigger that his own. To that
end, he speeds up, runs toward the other boy and pushed him
for as long as they can stand up. What is the maximal distance
by which it is possible to push in this fashion? The maximal
velocity of a run is v, the coefficient of friction between both
boys and the ice is µ.

pr 75. A uniform rod with length l is attached with a
weightless thread (whose length is also l) to the ceiling at point
A. The bottom end of the rod rests on the slippery floor at
point B, which is exactly below point A. The length of AB is
H, l < H < 2l. The rod begins to slide from rest; find the max-
imal speed of its centre during subsequent motion. Also, find
the acceleration of the rod’s centre and tension in the thread
at that moment when the rod’s speed is maximal if the rod’s
mass is m.

l

l

H

A

B

pr 76. A stick with uniform density rests with one end
against the ground and with the other against the wall. Ini-
tially it was vertical and began sliding from rest such that all
of the subsequent motion takes place in a plane that is perpen-
dicular to the intersection line of the floor and the wall. What
was the angle between the stick and the wall at the moment
when the stick lost contact with the wall? Ignore friction.

pr 77. A log with mass M is sliding along the ice while ro-
tating. The velocity of the log’s centre of mass is v, its angular
velocity is ω. At the moment when the log is perpendicular
to the velocity of its centre of mass, the log hits a stationery
puck with mass m. For which ratio of the masses M/m is the
situation, where the log stays in place while the puck slides
away, possible? The collisions are perfectly elastic. The log is
straight and its linear density is constant.

v

ωM

m

pr 78. A ball falls down from height h, initially the ball’s
horizontal velocity was v0 and it wasn’t rotating. a) Find the
velocity and the angular velocity of the ball after the following
collision against the floor: the ball’s deformation against the
floor was absolutely elastic, yet there was friction at the con-
tact surface such that the part of the ball that was in contact
with the floor stopped. b) Answer the same question with the
assumption that the velocities of the surfaces in contact never
homogenized and that throughout the collision there was fric-
tion with coefficient µ.

pr 79. A ball is rolling down an inclined plane. Find the
ball’s acceleration. The plane is inclined at an angle α, the
coefficient of friction between the ball and the plane is µ.

pr 80. A hoop of mass M and radius r stands on a slippery
horizontal surface. There is a thin slippery tunnel inside the
hoop, along which a tiny block of mass m can slide. Initially
all the bodies are at rest and the block is at the hoop’s up-
permost point. Find the velocity and the acceleration of the
hoop’s central point at the moment when the angle between
the imaginary line connecting the hoop’s central point and the
block’s position and the vertical is φ.

ϕ

O

A

r
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pr 81. A block with mass m = 10 g is put on a board that
has been made such that, when sliding to the left, the coef-
ficient of friction µ1 = 0,3, while when sliding to the right it
is µ2 = 0,5. The board is repeatedly moved left-right accord-
ing to the graph v(t) (see fig.). The graph is periodic with
period T = 0,01 s; the velocity v of the board is considered

tTT/2

v

1 m/s

positive
when directed to the right. Using the graph, find the average
velocity that the block will move with.

pr 82. A water turbine consists of a large number of paddles
that could be considered as light flat boards with length l, that
are at one end attached to a rotating axis. The paddles’ free
ends are positioned on the surface of an imaginary cylinder
that is coaxial with the turbine’s axis. A stream of water with
velocity v and flow rate µ (kg/s) is directed on the turbine
in such a way that it hits the paddles near the perimeter of
the turbine. Find the maximum possible usable power that
could be extracted with such a turbine; assume the number of
paddles to be large enough so that none of the water parcels
can escape without hitting a paddle.

v

l

µ

pr 83. A flat board is inclined at an angle α to the vertical.
One of its ends is in the water, the other one is outside the
water. The board is moving with velocity v with respect to its
normal. What is the velocity of the water stream directed up
the board?

v

u

pr 84. A motor-driven wagon is used to transport a load
horizontally by a distance L. The load is attached to the side of
the wagon by a cable of length l. Half of the time the wagon is
uniformly accelerated, the other half — uniformly decelerated.
Find the values of the acceleration a such that, upon reaching
the destination, the load will be hanging down motionlessly.
You can assume that a ≪ g.

pr 85. A shockwave could be considered as a discontinuous
jump of the air pressure from value p0 to p1, propagating with

speed cs. Find the speed which will be obtained, when influ-
enced by the shockwave, (a) a wedge-shaped block: a prism
whose height is c, whose base is a right triangle with legs a and
b and which is made out of material with density ρ; b) an body
of an arbitrary shape with volume V and density ρ.

cs

cb

x

p
p1

p0

a

pr 86. A dumbbell consisting of two elastic spheres connec-
ted with a thin steel rod is moving parallel to its axis with a
velocity v toward another exact same spheres. Find the ve-
locity of the dumbbell after a central collision. Is the kinetic
energy of the system conserved?

v0

appendix 1: Momentum conservation law.
Let us consider a system of N point masses (�bodies�), and

let us represent the force acting on the i-th point as a sum,

F⃗i =
∑

j F⃗ij + F⃗i, where F⃗ij is the force exerted on the i-th

body due to the j-th body 26 and F⃗i is an external force, i.e.

the net force exerted by such bodies which are not part of the

given system. Then, the Newton's 2nd law for the i-th body is

written as

mi
d

dt
v⃗i =

∑
j

F⃗ij + F⃗i.

If we sum this equality over the index i, we obtain at the left-

hand-side ∑
i

mi
d

dt
v⃗i = d

dt

∑
i

miv⃗i = d

dt
P⃗ ,

where P⃗ =
∑

i miv⃗i is called the momentum of the system of

bodies. Here we have kept in mind that F⃗ii = 0, and made use

of the additivity of di�erentiation: derivative of a sum is the

sum of derivatives. The internal forces at the right-hand-side

cancel out:∑
i

∑
j

F⃗ij

 =
∑
i,j

F⃗ij =
∑
i>j

(F⃗ij + F⃗ji) = 0.

Here we �rst represented the sum as being taken over all the

index ij pairs, and then grouped the terms with symmetric in-

dices (ij and ji) together (
∑

i>j means that the sum is taken

over all such ij-pairs where i > j); �nally, we use the Newton's

3rd law to conclude that F⃗ij + F⃗ji = 0. Upon introducing the

net external force as F⃗ =
∑

i F⃗i, we obtain

d
dt

P⃗ = F⃗ .

The last equality is essentially a generalization of the Newton's

2nd law to a system of bodies. In particular, if there are no

external forces, F⃗ = 0, and the momentum P⃗ is conserved.

Notice that if there are no external forces, the equations of

motion (equations which de�ne how the system will evolve),

i.e. equations expressing the Newton's 2nd law, obey transla-

tional symmetry : we can translationally displace the reference

frame by a vector a⃗ without any change to the equations of

motion. Indeed, the new vectors pointing to the positions of

the bodies (the radius vectors) are expressed in terms of the

26Due to the fact 5, F⃗ii = −F⃗ii, hence F⃗ii = 0: a body cannot exert a force on itself
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old ones as r⃗′
i = r⃗i − a⃗. The internal forces F⃗ij depend only

on the relative placement of the bodies, i.e. on the vectors

r⃗′
i − r⃗′

j = (r⃗i − a⃗) − (r⃗j − a⃗) = r⃗i − r⃗j which are expressed

in terms of the new coordinates exactly in the same way as in

terms of the old coordinates.

The discipline of analytical mechanics shows that each sym-

metry of the equations of motion containing a parameter

(which can take arbitrarily small values) gives rise to a conser-

vation law27. Here we have actually three independent para-

meters, the components of the displacement vector ax, ay, and

az; because of that we have three conserved quantities � the

respective components of the momentum vector P⃗ .

appendix 2: Angular momentum conservation law.
Similarly to the momentum conservation law, we consider a

system of N bodies, with the same designations. Then, we

can take the time derivative of the expression of the angular

momentum of the i-th body:

d
dt

mir⃗i × v⃗i = mi

(
dr⃗i

dt
× v⃗i + r⃗i × dv⃗i

dt

)
.

Here we have applied the product di�erentiation rule (ab)′ =
a′b+ab′ which is still valid in vector algebra: (⃗a ·⃗b)′ = a⃗′ ·⃗b+a⃗ ·⃗b′

and (⃗a × b⃗)′ = a⃗′ × b⃗ + a⃗ × b⃗′ (NB! we need to keep the or-

der of the vectors since the cross product is anticommutative,

a⃗ × b⃗ = −b⃗ × a⃗) Notice that d
dt r⃗i = v⃗i and v⃗i × v⃗i = 0, hence

the �rst term in right-hand-side drops out. Further, let us sum

our �rst equality over the index i, and substitute the remaining

terms at the right-hand-side using the Newton's 2nd law,

mi
dv⃗i

dt
=
∑

j

F⃗ij + F⃗i ⇒ mir⃗i × dv⃗i

dt
= r⃗i ×

∑
j

F⃗ij + F⃗i


to obtain

d
dt

L =
∑
i,j

r⃗i × F⃗ij +
∑

i

r⃗i × F⃗i.

Now, let us notice that due to the Newton's 3rd law F⃗ij = −F⃗ji;

all the macroscopic non-relativistic forces between two point

masses take place either at the contact point when these two

point masses touch each other (elasticity force, friction force),

or is parallel to the line connecting these points (electro-

static force, gravitational force) 28 In either case, we can write

r⃗j = r⃗i + kF⃗ji; if we multiply this equality by F⃗ji, we obtain

r⃗i × F⃗ij = r⃗j × F⃗ij = −r⃗j × F⃗ji, hence the internal torques

cancel pair-wise out from the sum; what remains is the net

external torque T⃗ =
∑

i r⃗i × F⃗i:

d
dt

L⃗ = T⃗ .

This can be considered as the generalization of the Newton's

II law to the rotational motion of a system of bodies; if the

torque of external forces is zero (T⃗ = 0) then we end up with

the conservation of angular momentum, L⃗ =const.

Note that within the discipline of analytical mechanics, the an-

gular momentum conservation can be derived from rotational

symmetry of the full energy of a mechanical system (while we

rotate the reference frame by an angle α around an axis which

goes through the origin, the expression for the full energy needs

to remain unchanged).

appendix 3: Energy conservation law.
In order to derive the energy conservation law, let us consider

the time derivative of the kinetic energy of a system of bodies,

de�ned as K = 1
2
∑

j miv⃗
2
i = 1

2
∑

j miv⃗i · v⃗i (here we wrote v2
i

as a dot product of v⃗i with itself). For di�erentiation of dot

products, the ordinary rule for the derivative of a product ap-

plies: (⃗a· b⃗)′ = a⃗′ · b⃗+a⃗· b⃗′; since the dot product is commutative

(i.e. a⃗ · b⃗ = b⃗ · a⃗), we obtain (⃗a · a⃗)′ = 2a⃗ · a⃗′. So,
d
dt

K =
∑

j

mi
dv⃗i

dt
· v⃗i =

∑
j

F⃗i · v⃗i,

which can be rewritten for the di�erential of the kinetic energy

as dK =
∑

j F⃗i · v⃗idt, where the force acting on the i-th body

can be expressed as the sum of internal and external forces,

F⃗i =
∑

j F⃗ij + F⃗i and v⃗idt = dr⃗i. Then

dK =
∑
i,j

F⃗ij · dr⃗i +
∑

i

F⃗i · dr⃗i.

Here, F⃗ij · dr⃗i is called the work done by the force F⃗ij . If the

forces F⃗ij

(a) depend only on the coordinates r⃗i and do not depend on

the velocities v⃗i and on time t;

(b) there exists such function Π ≡ Π(r⃗1, r⃗2, . . . r⃗N ) (hence-

forth referred to as the potential energy) that by any in-

�nitesimal (i.e. in�nitely small) displacements dr⃗i of the

bodies, the total work done by all the internal forces F⃗ij

and external forces F⃗i equals to the opposite of the total

di�erential29 of the potential energy, i.e.

−dΠ(r⃗1, r⃗2, . . . r⃗N ) =
∑

i

F⃗i +
∑

j

F⃗ij

 · dr⃗i;

then for any displacement of the system, dK = −dΠ and hence,

d(K +Π) = 0, i.e. the total energy E = K +Π = const; such in-

ternal forces F⃗ij and external forces F⃗i which satisfy the above

listed conditions are referred to as conservative forces.

Note that the condition (b) above is equivalent to saying that

the work done by the forces depends only on the initial and

�nal states of the system (i.e. on the positions of the point

masses), and not along which trajectories the point masses

moved. Mathematically, this condition can be also rewritten

using partial derivatives30,

− ∂Π(r⃗1, r⃗2, . . . r⃗N )
∂xi

=
∑

j

Fijx + Fix; (12)

right-hand-side of this condition is the x-component of the

total force acting on the i-th point mass (xi stands for the

x-coordinate of the i-th particle); similar conditions need to be

valid also for the y- and z-components.

An important case when the forces are conservative is the case

of central force �elds: the internal force between two point

27This is the content of the Noether’s theorem (E. Noether 1918).
28At non-relativistic speeds, the Lorentz force acting between two moving charges is much smaller than the electrostatic force and is therefore a

relativistic effect; still, the Lorentz force can lead to situations with seeming violation of the conservation of angular momentum, e.g. in the case of a
moving charge at the centre of a ring current.

29The total differential is defined as dΠ(r⃗1, r⃗2, . . . r⃗N ) ≡ Π(r⃗1 + dr⃗1, r⃗2 + dr⃗2, . . . r⃗N + dr⃗N ) − Π(r⃗1, r⃗2, . . . r⃗N )
30Partial derivative of a function: while taking derivative with respect to a given variable, all the other variables are assumed to be constant; for

instance, ∂f(x,y)
∂x

denotes the derivative of f(x, y) with respect to x while y is considered to be a constant.
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masses is parallel to the line connecting these point masses

and depends by modulus only on the distance,

F⃗ij = (r⃗i − r⃗j)fij(|r⃗i − r⃗j |),
and the external force acting upon i-th point mass has a similar

property with respect to a reference point at the r⃗i0,

F⃗i = (r⃗i − r⃗i0)fi(|r⃗i − r⃗i0|);
note that due to Newton's 3rd law, fij(r) = fji(r). Then, with
positive values of fij and fi corresponding to repulsion and

negative values to attraction, the potential energy is given by

Π =
∑

i<j≤N

gij(|r⃗i − r⃗j |) +
∑
i≤N

gi(r⃗i − r⃗i0), where

gij(r) = −
∫ r

fij(r′)r′dr′, gi(r) = −
∫ r

fi(r′)r′dr′ (13)

(the lower bound of these integrals can be arbitrary). It is not

too di�cult to check that with such potential energy, equality

(12) is satis�ed, indeed, for all values of i.

If there are also some non-conservative external forces present

then we can separate conservative and non-conservative forces,

F⃗i = F⃗ ′
i + F⃗ ′′

i , leading to

d(K + Π) =
∑

i

F⃗ ′′
i dr⃗i,

where F⃗ ′′
i denotes the sum of all the non-conservative forces

acting on the i-th point mass.

appendix 4: Centrifugal force and Coriolis force.
Consider a system of reference, which rotates around the origin

O with an angular velocity Ω⃗ (the vector de�nes the rotation

axis according to the corkscrew rule). Consider a point P ,

which is motionless in the rotating system, and let us denote

r⃗ =
−−→
OP . In the lab system of reference, the point P moves

with velocity v = rΩ, and when studying the direction of the

velocity v⃗ = dr⃗
dt , one can see that v⃗ = Ω⃗×r⃗. Now, if the point P

moves in the rotating frame of reference with velocity u⃗ = dr⃗
dτ

(let us use τ to measure the time in the rotating system), then

this additional velocity needs to be added to what would have

been for a motionless point:
dr⃗

dt
= dr⃗

dτ
+ Ω⃗ × r⃗.

So, we can conclude that the time-derivatives of vectors in ro-

tating and lab frames of reference are related via equality
d
dt

= d
dτ

+ Ω⃗ × .

This is written in the form of an operator, which means that

we can write any vector (e.g. r⃗ or v⃗) rightwards of all the three

terms. In particular, we can apply this formula to the right-

and left-hand-sides of the equality v⃗ = u⃗ + Ω⃗ × r⃗:

dv⃗

dt
=
(

d
dτ

+ Ω⃗×
)(

u⃗ + Ω⃗ × r⃗
)

=du⃗

dτ
+ Ω⃗ × u⃗ + d(Ω × r⃗)

dτ
+ Ω⃗ ×

(
Ω⃗ × r⃗

)
.

Here we need to bear in mind that when taking derivatives of

vectors and products of vectors, all the well-known rules can

be applied; in particular, d
dt (⃗a × b⃗) = da⃗

dt × b⃗ + a⃗ × d⃗b
dt and

d
dt (⃗a · b⃗) = da⃗

dt · b⃗ + a⃗ · d⃗b
dt . We also need the rule for the double

cross product, a⃗ × (⃗b × c⃗) = b⃗(⃗a · c⃗) − c⃗(⃗a · b⃗); you can memorize

this equality by keeping in mind that the double product is a

linear combination of the vectors from the inner braces, and

that the sign '+' comes with the vector from the middle pos-

ition. And so, bearing in mind that dΩ⃗
dτ = 0 and dr⃗

dτ = u⃗, and

assuming that r⃗ ⊥ Ω⃗ ⇒ r⃗ · Ω⃗ = 0, we obtain
dv⃗

dt
= du⃗

dτ
+ 2Ω⃗ × u⃗ − Ω2r⃗.

Let us recall that dv⃗
dt is the acceleration of the point P as seen

in the lab frame of reference, and du⃗
dτ is the same as seen in the

rotating frame of reference. Now, if P is a point mass m, and

there is an external force F⃗ acting on P , then F⃗ = m dv⃗
dt and

hence,

m
du⃗

dτ
= F⃗ − 2Ω⃗ × u⃗m + Ω2r⃗m,

i.e. in the rotating system of reference, the body behaves as if

there were additional forces: the Coriolis force −2Ω⃗ × u⃗m, and

the centrifugal force Ω2r⃗m.

appendix 5: Stablity and conservation laws.
It is well-known that a system is stable at the minimum of

its potential energy. But why? Why is a minimum di�erent

from a maximum? In the case of the Fermat' principle, there

is a clear di�erence: there is no longest optical path between

two points � the ray could just go �zig-zag� �, but there is

de�nitely one which is the shortest!

The reason is simple � at an equilibrium state, the kinetic

energy has always minimum (as long as masses are positive).

What we actually do need for a stability is a conditional ex-

tremum of one conserved quantity (such as the net en-

ergy), under the assumption that the other conserved

quantities are kept constant (unconditional extremum is

OK, too). Consider the motion of a body along x-axis and let

us describe it on the phase plane, with coordinates x and p (the

momentum). The overall energy is E = U(x) + p2/2m. Now,

if we depict this energy as a surface in 3-dimensional space

with coordinates x, p and E, the point describing the state of

the system will move along the intersection line of that surface

with a horizontal plane E = Const. At the minimum of U(x),
with p = 0, this intersection line would be just a single point,

because this is the lowest point of that surface. The near-by

trajectories will be obtained if we ascend the horizontal plane

a little, E = Emin + ε, so that it no longer just touches the

surface, but cuts a tiny ellips from it. All the points of that

trajectory (the ellips) are close to the equilibrium point, so the

state is, indeed, stable.

It appears that a system can be stable also because of a con-

ditional maximum of the net energy: while an unconditional

extremum of the kinetic energy can only be a minimum, things

are di�erent for conditional extrema. Perhaps the simplest ex-

ample is the rotation of a rigid body. Let us consider a rectan-
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gular brick with length a, width b, and thickness c (a > b > c).

Let Ic be its moment of inertia for the axis passing its centre

of mass and perpendicular to the (a, b)-plane; Ib and Ia are

de�ned in a similar way. For a generic case, the moment of

inertia I will depend on the orientation of the rotation axis,

but it is quite clear that Ic ≥ I ≥ Ia (it can be shown eas-

ily once you learn how to use tensor calculations). Now, let

us throw the brick rotating into air and study the motion in

a frame which moves together with the centre of mass of the

brick (in that frame, we can ignore gravity). There are two

conserved quantities: angular momentum L, and rotation en-

ergy K = L2/2I. We see that for a �xed L, the system has

minimal energy for I = Ic (axis is parallel to the shortest

edge of the brick), and maximal energy for I = Ia (axis is

parallel to the longest edge of the brick). You can easily

check experimentally that both ways of rotation are, indeed,

stable! Meanwhile, if the axis is parallel to the third edge,

the rotation is unstable. This phenomenon is demonstrated in

a video made by NASA on the International Space Station,

https://mix.msfc.nasa.gov/abstracts.php?p=3873.

Well, actually the rotation with the minimal energy is still a

little bit more stable than that of with the maximal energy;

the reason is in dissipation. If we try to represent the motion

of the system in the phase space (as described above), a bowl-

shaped energy surface (as shown in the �gure above) would be

substituted by a hill-shaped one; at the equilibrium, the phase

trajectory is contracted into a point � the point where the

top the �hill� is touching a horizontal plane E = Emax. Due

to dissipation, the energy will decrease, E = Emax − ε, and

the phase trajectory would be a slowly winding-out spiral. So,

while you are probably used to know that dissipation draws a

system towards a stable state, here it is vice versa, it draws the

system away from the stable state! This is what is known as

dissipative instability.

appendix 6: Lagrangian formalism.
In our approach to mechanics, we postulated the Newton's

laws; based on that, we derived energy conservation law which

is valid for conservative forces, and using energy conservation

law, we arrived at the method of generalized coordinates.

In analytical mechanics, the order is opposite. First, we postu-

late that any mechanical system has a certain potential energy,

and a certain kinetic energy, both of which are additive; we also

establish a formula for kinetic energy of point masses, and for

potential energies of point mass interactions depending on the

type of interaction (this is done similarly to how we estab-

lished rules for calculating forces for di�erent interaction types

in chapter 2).

Second, let us consider a mechanical system obeying n degrees

of freedom, i.e. in order to specify uniquely the state of the

system, we need n parameters. We postulate that if this sys-

tem evolves from one state described by a set of coordinates

qi, i ∈ [1, n] at time t = τ [this state corresponds to a point

in the n + 1-dimensional con�guration space with coordinates

(q1, q2, . . . , qn, t)] to another state q′
i at t = τ ′ then the evolu-

tion of the system in time takes place along such a path qi(t)
(a curved line connecting the initial and �nal states in the con-

�guration space) that makes the value of a certain integral S
as small as possible. This integral, referred to as the action, is

de�ned via the full potential and kinetic energies of the system,

denoted as V and T , respectively; V depends on the coordin-

ates, V = V (qi), i ∈ [1, n], and T also on the changing rate of

coordinates q̇i:

S =
∫ τ ′

τ

L[qi(t), q̇i(t), t]dt, (14)
where

L(qi, q̇i, t) = T (qi, q̇i, t) − V (qi, t) (15)
is called the Lagrangian of the system, and the postulate itself

as the principle of least action31

Using the methods of variational analysis, one can show that

the integral32 S has an extremum if
d
dt

∂L
∂q̇i

= ∂L
∂qi

; (16)

here ∂L
∂q̇i

means that we take derivative of the Lagrangian

L(qi(t), q̇i, t) with respect to only one of its 2n+1 variables, q̇i,

while considering all the other variables to be constant. ∂L
∂qi

is

de�ned analogously. Meanwhile, d
dt denotes taking a full time

derivative, i.e. we take into account that L depends on time

both explicitly through its last argument t, as well as impli-

citly since the quantities qi and q̇i are also functions of time.

Please note that Eq. (16) is valid for every i, so that we have

a system of n equations. From the principle of least action to

Equation (16), there is only one mathematical step, so we can

say that analytical mechanics basically postulates the Equation

(16).

Which way is better: the historical way of postulating the New-

ton's laws, or postulating Eq. 16? Both approaches have strong

and weak points. While the classical approach is built up step-

by-step, from immediate experimental �ndings, the approach

of analytical mechanics takes the least action principle �out of

thin air�. Meanwhile, Eq. (16) gives us a very universal and

powerful tool for theoretical analysis (the usage of which is not

limited to mechanics): as soon as we have an expression for the

Lagrangian, we can write down the evolution equation describ-

ing how the system will evolve. However, it should be kept in

mind that only in the case of classical mechanics, L = T − V ,

and one should keep vigilance even in the case of classical mech-

anics (see below).

As a matter of fact, the least action principle can be introduced

more naturally (not �our of thin air�) using quantum mechanics.

Indeed, if we consider a point mass as a quantum-mechanical

probability wave then using quasi-classical approximation, we

can express the phase of the wave as

φ =
∫

(k⃗ · dr⃗ − ωdt) = ~−1
∫

(p⃗ · dr⃗ − Edt); (17)
here p⃗ is the momentum and E � the energy of the particle.

If we keep in mind that dr⃗ = v⃗dt and v⃗ · p⃗ = 2T then we can

further write φ = ~
∫

[2T − (T + V )]dt = ~S. So, the action S
gives us directly the phase of the wave. The waves add up con-

structively if they arrive at the same phase, and many waves

coming along di�erent paths arrive almost at the same phase

if these paths are close to the path of least action. It should

31Also as the principle of a stationary action.
32More precisely, functional — a scalar quantity which depends on which function(s) qi(t) we have.
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be noted that exactly the same phenomenon happens in the

case of light propagation, and can be summarized as the Fer-

mat' principle. 33 We can say that according to the Huygens

principle for wave propagation, the amplitude of the probabil-

ity wave can be found as the sum over the contributions from

all the possible ray tracing paths; however, majority of these

contributions cancel out due to opposite phases, and only the

contribution of the �optimal path� (and its immediate neigh-

bourhood) is left intact; �optimal� means corresponding to an

extremum (which appears to be a minimum) of the action. So,

we can say that a point mass moves along the trajectory of

least action.

Now, let us check if the least action principle is in agreement

with the Newton's laws. To this end, let us consider a system

of point masses mi, i ∈ [1, n], and use the ordinary Euclidian

coordinates: let r⃗i point to the position of i-th point mass.

Then we de�ne (postulate) the Lagrangian as

L = 1
2
∑
i,j

miv⃗
2
i − Π(r⃗1, r⃗2, . . .);

here we have denoted v⃗i = dr⃗
dt and assumed that all the inter-

action forces are conservative: Π(r⃗1, r⃗2, . . .) denotes the total

potential energy as a function of coordinates of all the particles.

Then, if we apply Eq. 16 to this Lagrangian, and keep in mind

that ∂L
∂vix

= mivix (where index x denotes a projection of a

vector to the x-axis), we obtain

d
dt

mivix = −∂Π(r⃗1, r⃗2, . . . r⃗N )
∂xi

.

According to Eq. (12), what we have at the right-hand-side is

the x-component of the force acting on the i-th particle (obvi-

ously a similar expression is obtain for y- and z-components).

So, we conclude that if written for Euclidian coordinates, equa-

tion (16) is equivalent to the Newton's laws. Meanwhile, equa-

tion (16) being satis�ed is equivalent to the least action prin-

ciple being valid. Now, let us notice that the least action prin-

ciple is formulated independently of the coordinate system: if

a certain trajectory r⃗i = r⃗i(t) has minimal action in Euclidian

coordinates r⃗i then it remains being minimal even if expressed

in terms of the generalized coordinates qi = qi(t). Since the

trajectory has an extremal action in terms of generalized co-

ordinates qi then (according to the results of the variational

analysis), the Lagrangian equation (16) must be also valid when

the generalized coordinates qi are used. This completes our

proof34 that Newton's laws and Eq. (16) are equivalent.

Although we kind of completed the proof, we need to make a

comment regarding the cases when the number of degrees of

freedom is recuced due to various constraints. As an example,

let us consider a rigid body made of N molecules; this set of

molecules has 3N degrees of freedom. However, the relative dis-

tances between molecules are �xed by molecular forces, so that

there are only six degrees of freedom left: three numbers �x the

position of the centre of mass, and the orientation of the body is

�xed by three angular coordinates. Previously we have proved

the least action principle for a set of point masses (molecules),

so we know that our system evolves in the 3N + 1-dimensional

con�guration space along such a curve σ connecting the start-

ing point A with the destination point B which minimizes the

action. In this con�guration space, the Lagrangian needs to

account for the inter-molecular interaction energies, as well.

While the expression for the inter-molecular interaction ener-

gies may be fairly complicated, as long as we are interested only

in the macroscopic dynamics, we just need to �x the distances.

The distances can be �xed with a simpli�ed Lagrangian: we

say that the inter-molecular interaction energy is zero, if the

distance between two molecules equals to what it should be,

and becomes very large otherwise. Due to the inter-molecular

distances being �xed, the state of this system of molecules can

be fully described by six generalized coordinates; this means

that all the trajectories in the 3N + 1-dimensional con�gura-

tion space are constrained into a six-dimensional hypersurface

M (points A and B also need to lie on that hypersurface).

We know that the trajectory σ minimizes the action between

A and B in the 3N + 1-dimensional con�guration space; the

hypersurface M is a part of that space, so it surely minim-

izes the action between A and B in the hypersurface M, as

well. Therefore, Eq. (16) must remain valid when we use six

generalized coordinates to describe the state of a rigid body.

Similar argumentation works not only for a rigid body, but for

any constraints �xing relative positions of the parts of a system

(and thereby reducing the number of degrees of freedom).

From the discussions of the previous paragraph we can derive

also an important rule: if we write Lagrangian using gener-

alized coordinates for a system with intrinsic constraints, the

number of coordinates should be as small as possible. For in-

stance, if we have a rigid body, we should use six coordinates

and not seven, because the value of the seventh coordinate can

be derived from the �rst six (with the seventh coordinate, we

would need to add additional term to the Lagrangian �xing the

value of the seventh coordinate).

So, we have now two alternative options: we can use the Lag-

rangian equation (16), and we can use the method 6 in which

case we derive the equation of motion from the energy conser-

vation law. These two approaches are fairly similar: in both

cases we need to express the kinetic and potential energies in

terms of generalized coordinates and time derivatives of these.

However, there are also certain di�erences: in one case, we

derive the equation of motion directly from the energy conser-

vation law; in the other case we consider the di�erence of these

two energies and apply a formula which we can either consider

to be postulated, or derived from the Newton's laws in a fairly

complicated way.

Which way is better? To begin with, it should be emphasized

that while Eq. (16) can be always used, the method 6 based

on energy conservation law can be applied only in those cases

when there is a single degree of freedom, i.e. the state of the

system can be described with only one generalized coordinate.

Indeed, upon taking time derivative of the energy conservation

law, we obtain one di�erential equation, but we need as many

equations as there are unknown functions (degrees of freedom).

33We can see rainbow exactly due to the same reason: the rainbow arc can be seen because the angle by which a light beam is deflected after a
reflection inside a spherical water droplet has an extremum (as a function of the aim parameter); hence, near the deflection angle extremum, a wide
range of aim parameters corresponds to a narrow range of deflection angles.

34From which we dropped the mathematical piece using variational analysis
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However, for a majority of Olympiad problems, this condition

is satis�ed (keep in mind that each additional conserved quant-

ity, e.g. momentum, reduces the e�ective number of degrees of

freedom by one).

So, let us compare these two methods when we have one gen-

eralized coordinate q, and let us assume that the energies

do not depend explicitly on time. In the case of Newtonian

mechanics, kinetic energy is proportional to squared speed,

so we may assume that T = 1
2 M(q)q̇2. Then, the energy

conservation law states that 1
2 M(q)q̇2 + V (q) = E, hence

1
2 M′(q)q̇3 + M(q)q̇q̈ + V ′(q)q̇ = 0 and

M(q)q̈ = −1
2

M′(q)q̇2 − V ′(q).

Meanwhile, the Lagrangian is expressed as L = 1
2 M(q)q̇2 −

V (q); then, with d
dt

∂L
∂q̇ = d

dt M(q)q̇ = M ′(q)q̇2 + M(q)q̈,
Eq. (16) is rewritten as

M ′(q)q̇2 + M(q)q̈ = 1
2

M′(q)q̇2 − V ′(q).
It is easy to see that we obtained in both cases the same equa-

tion, and that mathematically, di�culty level was almost the

same. However, we needed to memorize Eq. (16), which makes

the method based on the energy conservation law slightly

easier.

Before we make any �nal conclusion, let us consider a system

of two balls of mass m, connected with a spring of length a

and sti�ness k, rotating with angular momentum L⃗ (which is

perpendicular to the spring) in weightlessness. Here, it seems

that we have two degrees of freedom (the angle and length of

the spring), but an additional (to the energy) conservation law

(of angular momentum) reduces the e�ective number of degrees

of freedom down to one. Let us use the deformation x of the

spring as the generalized coordinate. Then,

T = mẋ2

4
+ L2

m(a + x)2 , Π = 1
2

kx2.

The remarkable thing here is that the kinetic energy depends

now not only on ẋ, but also on x; in e�ect, the second term

of the kinetic energy behaves as a potential one, and can be

combined into an e�ective potential energy in the expression

for the full energy. Following the method 6, we obtain
1
2

mẍẋ − 2L2

m(a + x)3 ẋ + kxẋ = 0 ⇒ ẍ = 4L2

m2(a + x)3 − 2 k

m
x.

Further, let us try to obtain the same result using the Lag-

rangian (NB! This will be wrong!):

L = mẋ2

4
+ L2

m(a + x)2 − 1
2

kx2,

hence
1
2

mẍ = − 2L2

m(a + x)3 − kx ⇒ ẍ = − 4L2

m2(a + x)3 − 2 k

m
x.

This is not the same result as before � the �rst term in right

hand side has a di�erent sign! So, what went wrong? The �rst

result is clearly the correct one as the total energy is clearly

conserved here. What went wrong is that by making use of

the angular momentum conservation law to reduce the number

of coordinates we changed the starting and ending points in

the con�guration space. As we proved above, the least action

principle [and hence, Eq. (16)] is valid if we don't use conser-

vation laws to reduce the number of degrees of freedom, and

all the conservation laws themselves are to be considered as

the consequence of Eq. (16). In this case, the original number

of degrees of freedom was two: we can use the deformation

x and the rotation angle φ of the spring to describe fully the

state of the system. If we use these two coordinates with the

corresponding Lagrangian then everything will be correct: the

action ∫ t2

t1

[
mẋ2

4
+ mφ̇2(a + x)2

4
− 1

2
kx2
]

dt

is minimized by the true trajectory if we compare the traject-

ories connecting the initial state x1, φ1 and the �nal state x2,

φ2. Now, however, we have dropped the variable φ, and if

we drop the condition for the initial and �nal angles, many

more trajectories will connect the initial state x1 with the �nal

state x2: the true trajectory does no longer need to be the one

with the smallest action. An important lesson from this ana-

lysis is that don't use Eq. (16) if you reduce the number

of degrees of freedom by making use of a constraint

(a conservation law) which involves time derivatives of

the coordinates, because by �xing the value of a time deriv-

ative we do not �x the value of the coordinate itself. If you

have such conservation laws and manage to �nd so many con-

straints that you can bring the number of coordinates down

to one, go ahead and use the method 6; otherwise keep the

original number of coordinates and apply Eq. (16).

Finally, let us also emphasize that the Lagrangian is given by

the di�erence of kinetic and potential energies only in the case

of classical mechanics; in other cases, the �rst task is to �gure

out the expression for the Lagrangian. How to do it? Basically

there are two options. Assuming we know already the equa-

tion of motion in Euclidian coordinates xi, we can do it by

trial and error �nding such L(xi, ẋi, t) that Eq. (16) becomes

identical to the equation of motion. Note that the original

equation of motion does not need to have origins in physics.

However, once we have found the corresponding Lagrangian,

we can interpret it physically: for instance, if the Lagrangian

obeys translational symmetry, we can use the Noether's the-

orem to �nd a conserved quantity and call it momentum35. In

electromagnetism, we'll use this method to derive generalized

momentum of a charged particle in magnetic �eld.

The second option works if we study a system which can be

considered quantum-mechanically; let us illustrate this by con-

sidering a relativistic point mass. We know that the least action

principle in mechanics corresponds to the Huygens principle

[see Eq. (17)] and hence, the action must be the phase of the

quantum-mechanical probability wave, multiplied by ~ � in

that case the classical action would be the small-speed-limit of

the relativistic one. So, with m denoting the relativistic mass

and m0 the rest mass of a particle,

S =
∫

(p⃗·v⃗−E)dt =
∫

(mv2−T −V )dt =
∫

[m(v2−c2)−V ]dt,

hence

L = m(v2 − c2) − V = −m0

√
1 − v2

c2 − V.

It is easy to verify that if we put this Lagrangian into Eq. (16),

by keeping in mind that V = V (x, y, z) and v⃗ = (ẋ, ẏ, ż), we
35As a matter of fact, in the case of translational symmetry we don’t even need to use the Noether’s theorem: ∂L

∂qi
= 0, hence d

dt
pi = 0, where

pi = ∂L
∂q̇i

is the i-th component of the momentum.
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obtain relativistic Newton's 2nd law. As we can see, there is no

kinetic energy now included into the Lagrangian.

6 HINTS
1. Write out the balance of torques for the contact point O of
the hoop and the shaft. What is the angle that the tangent
to the shaft at point O forms with the horizon (given that the
wire slips on the shaft)?
2. Write down the equation for the torques for the cylinder &
block system with respect to the contact point of the cylinder
and the inclined plane. What angle with respect to the hori-
zon is formed by the tangent to the cylinder constructed at the
position of the little block?
3. According to the idea 4, consider the system “rod CD + the
mass m” as a whole; there are four forces acting on it: mg⃗, F⃗ ,
and the tension forces of the rods, T⃗AC and T⃗BD. The tension
forces are the ones which we don’t know and don’t want to
know. According to the idea 2, these will drop out from the
balance of torques acting on the rod CD with respect to the
intersection point of AC and BD. Indeed, due to the fact 20,
the tension force in the rod AC is parallel to AC; the same
applies to the rod BD. Now, what must be the torque of force
F? For what direction of the force will this torque be achieved
with the minimum magnitude?
4. The vector sum of the forces F⃗ and mg⃗ has to compensate
the sum of the friction and the normal force f⃗ = N⃗ + F⃗h, i.e.
has to be at an angle arctan µ with respect to the normal to the
plane. Let us draw the force triangle mg⃗ + f⃗ + F⃗ = 0: the vec-
tor mg⃗ can be drawn immediately (its direction and magnitude
are known), the direction of f⃗ can be noted by a straight line
passing through the terminal point of mg⃗. F⃗ has to connect
that straight line to the initial point of mg⃗. For which direction
is its magnitude minimal?
5. Go to the reference frame of the inclined surface (invoke
Ideas 7 and 8) and use the same method as for problem 4
(⃗a + g⃗ functions as the effective gravity g⃗e).
6. Use a rotating reference frame associated with the cylin-
der (where the block is at rest, and the centrifugal force f⃗t is
constant and pointing downwards). (a) The terminal point of
the net force of gravity and centrifugal force is moving on a
circle and has to be equal to the net force f⃗ of the normal and
frictional forces. What is the maximum allowed angle between
the vectors f⃗t and f⃗ so that there be no slipping? For which
direction of mg⃗ is the angle between the vectors f⃗t and f⃗ max-
imal? (b) There are still only three forces; as long as there is
an equilibrium, these three vectors must form a triangle and
hence, must lay on the same plane. According to the idea K-
11, we’ll depict the force balance in this plane, i.e. in the plane
defined by the vectors g⃗ and f⃗t. The approach used in part (a)
can still be used, but the terminal point of f⃗t + mg⃗ draws only
an arc of a full circle. Determine the central angle of that arc.
Depending on the arc length, it may happen that the maximal
angle between the surface normal (= the direction of f⃗t) and
f⃗ is achieved at one of the endpoints of the arc.
7. Notice that while rolling at constant speed, the centre of
mass of the whole cart moves also with a constant speed, i.e.

there should be no horizontal forces acting on the cart. Also,
each of the cylinders rotates with a constant angular speed,
hence there should be no torque acting on it, hence the fric-
tion force must be zero. Use the rotating frame of a wheel;
apply the ideas 12 and11 to substitute one asymmetric body
(the cylinder with a hole) with two symmetric bodies, a hole-
less cylinder, and a superimposed cylinder of negative density;
further use ideas 9 and 10 to draw the gravity and centrifugal
forces; keep in mind that the rod can provide any horizontal
force, but cannot exert any vertical force.

8. Based on the idea 14, on which line does the intersection
point of the frictional forces have to lie? What can be said
about the two angles formed by the frictional force vectors and
the thread’s direction. Given the Idea no. 1 (the axis is per-
pendicular with the tension in the thread)? Now combine the
two conclusions above. Where is the intersection point of the
friction force vectors? What is the direction of the cylinder’s
velocity vectors at the points where the cylinder rests on the
rough band? Where is the cylinder’s instantaneous rotation
axis (see how to find it in the kinematics brochure)? What is
the velocity vector of the cylinder’s centre point? (b) Will the
equilibrium condition found above be violated if the surface is
uniformly rough?

9. Draw a circle whose diameter is the straight line connect-
ing the points of support. Use Fact no. 22: which curve can
the ball move along? Where is the bottom-most point of this
curve?

10. Consider the torques acting on the rod with respect to the
hinge. For which angle α will the net force of the normal and
frictional forces push the rod harder against the board?

11. By how much will the block descend if the thread is exten-
ded by δ?

12. Let’s assume that the horizontal component of the tension
in the rope is Tx. What is the vertical component of the ten-
sion next to the ceiling? Next to the weight? Write down the
condition for the balance of the forces acting on a) the weight
and b) the system of weight & rope (cf. Idea no. 4).

13. Seeing as H ≪ L, clearly the curvature of the rope is small,
and the angle between the tangent to the rope and horizon re-
mains everywhere small. From the horizontal force balance
for the rope, express the horizontal component of the tension
force Tx as a function of the length l (note that while Tx re-
mains constant over the entire hanging segment of the rope,
we’ll need its value at the point P separating the hanging and
lying segments). Write down the balance of torques acting on
the hanging piece of the rope with respect to the holding hand
(according to what has been mentioned above, the arm of the
gravity force can be approximated as l/2). As a result, you
should obtain a quadratic equation for the length l.

14. Use Idea 9: change into the reference frame of the rotat-
ing hinge. a) Following the idea 19, write down the condition
of torque balance with respect to the hinge (Idea no. 2) for
a small deviation angle φ. Which generates a bigger torque,
mg⃗ or the centrifugal force? (Note that alternatively, the idea
21 can be also used to approach this problem). b) Following
the idea 21, express the net potential energy for the small devi-
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ation angles φ1 and φ2 using the energy of the centrifugal force
(which resembles elastic force!) and the gravitational force; ac-
cording to the idea 20, keep only the quadratic terms. You
should obtain a quadratic polynomial of two variables, φ1 and
φ2. The equilibrium φ1 = φ2 = 0 is stable if it corresponds
to the potential energy minimum, i,e, if the polynomial yields
positive values for any departure from the equilibrium point;
this condition leads to two inequalities. First, upon considering
φ2 = 0 (with φ2 ̸= 0) we conclude that the multiplier of φ2

1 has
to be positive. Second, for any φ2 ̸= 0, the polynomial should
be strictly positive, i.e. if we equate this expression to zero and
consider it as a quadratic equation for φ1, there should be no
real-valued roots, which means that the discriminant should be
negative.
15. Apply the ideas 19 and 22 for such a angular position of
the beam, for which the magnitude of the buoyant force doesn’t
change (i.e. by assuming a balance of vertical forces). From
idea no. 2, take the centre of mass for the pivot point. While
computing the torque of the buoyant force, use Ideas 11, 12: if a
certain region has no displaced water, the displaced water dens-
ity is zero, but it can be represented as overlapping negative
and positive mass densities: 0 = ρw +(−ρw). The cross-section
of the underwater part of the beam could be represented as a
superposition of a rectangle and two symmetrically positioned
narrow triangles (one of them of negative mass).
16. The container & water system is affected by the gravity
and the normal reaction force of the horizontal surface on the
liquid. Since we know the pressure of the liquid at the base of
the container, we can express the mass of the container from
the vertical condition for equilibrium.
17. To compute the first correction using the perturbation
method we use the Fact 51 and the reference system of the
block sliding down uniformly and rectilinearly: knowing the
magnitude and the direction of the frictional force we can find
its component in w⃗ and u⃗ direction. The sign of the latter flips
after half a period, and so it cancels out upon averaging.
18. Let us choose the origin of the vertical x-axis to be a point
on the surface of the ocean very far from the iron deposit. For
the zero reference point of the Earth’s gravitational potential
we shall choose x = 0 (i.e. φearth = gx), for that of the iron
deposit we shall take a point at infinity. Then, for the points
on the ocean’s surface very far from the iron deposit, the grav-
itational potential is zero. It remains to find an expression for
the potential above the iron deposit as a function of x (using
the principle of superposition) and equate it to zero.
19. Let us employ the reference frame of the platform. Let us
the consider the balance of torques with respect to the axis of
the small disk (then the lever arm of the force exerted by that
axis is zero). Let us divide the disk into little pieces of equal
size. The frictional forces acting on the pieces are equal by mag-
nitude and are directed along the linear velocities of the points
of the disk (in the chosen reference frame). Since the motion of
the disk can be represented as a rotation around an instantan-
eous axis, then concentric circles of frictional force vectors are
formed (centred at the instantaneous rotation axis). Clearly,
the net torque of these vectors with respect to the disk’s axis
is the smaller, the smaller is the circles’ curvature (i.e. the

farther the instantaneous rotation axis is): the torque is zero
when the instantaneous rotation axis is at infinity and the con-
centric circles become parallel straight lines. An instantaneous
rotation axis at infinity means that the motion is translational,
ω3 = 0 (since the linear velocity v = ω3r of a given point is
finite, but r = ∞).

20. The instantaneous axis of rotation is at a distance r = v/ω

from the disk’s axis. Let’s use the same imaginary slicing as
in the previous problem. Now compute the component of the
net force in the direction of motion. Notice that the frictional
forces on the points that are symmetrical with respect to the
instantaneous rotation axis balance each other across a whole
circular region of radius R − r. The non-balanced region is un-
fortunately shaped for calculation. Let us imagine extending
the "balanced" region up to R (the dashed circle in the fig-
ure). The part of this extended balanced region, where there
is no actual rotating disk underneath (the dark gray crescent
in the figure), could be represented as a superposition of the
two disks, one rotating clockwise and the other – anticlock-
wise. In that case the clockwise component partakes in the
balancing, whereas the anticlockwise component remains un-
balanced. To sum up, two thin crescent-shaped regions remain
unbalanced: one corresponds to the the real disk (light gray in
the figure), the other — to a disk rotating anticlockwise (dark
gray); normal to v⃗, the width of these regions is everywhere
equal to r. The net force is the easiest to find by integrating
across the crescent-shaped regions using the polar coordinate
φ: |dF⃗ | = A · dS, where dS is the area of the surface element;
dFx = A cos φdS = B cos2 φdφ, Fx =

∫
dFx = B

∫ 2π

0 cos2 φdφ.
What are the values of the constants A and B?

O

r

21. Consider the unit vector τ⃗ directed along the infinitesimal
displacement vector of the centre of the mass at the instant
when the pencil begins moving. Let’s express its coordinates
in the Cartesian axes (x, y, z), where x is parallel to the pen-
cil and the (x, y)-plane is parallel to the inclined slope. Using
the spatial rotations formulae we represent it in the new co-
ordinates (x′, y′, z), which are rotated with respect to (x, y, z)
around the z-axis by an angle φ (so that the axis x′ is hori-
zontal). Using the spatial rotations formulae we express the
vector’s τ⃗ vertical coordinate z′ in the (x′, y′, z′) coordinate
axes, which is obtained from the axes (x′, y′, z) by rotating
about the x′ by the angle α.

22. The string connects the two points with the shortest dis-
tance along the cylinder’s side; when unfolded, the cylinder
is a rectangle. Consider the vertical plane touching the sur-
face of the cylinder that includes the hanging portion of the
string. This plane and the cylinder touch along a straight line
s. If you imagine unfolding the cylinder, the angle between the
string and the straight line s is equal to the cylinder’s inclin-
ation angle α. Given this, l is easy to find. When the weight
oscillates, the trace of the string still stays straight on the un-
folded cylinder. Therefore the length of the hanging string
(and thus the weight’s potential energy) do not depend in any
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oscillatory state on whether the surface of the cylinder is truly
cylindrical or is unfolded into a planar vertical surface (as long
as the spatial orientation of the axis s is preserved).

23. Write down the two equations describing the balance of
force and torques, and then another one that describes the lin-
ear relation between the elongations of the string: T1 − T2 =
T2 − T3.

24. Initially only the vertical forces affect the hanging block,
therefore the initial displacement vector is also vertical. If the
acceleration of the large block is a1, that of the block on top of
it — a2 and that of the hanging block — a3, then a1 + a2 = a3
holds. Now we can write down Newton’s 2nd law for each body.
The fourth and the final unknown is the tension in the string.

25. Go to the reference frame of the wedge-block. In the bor-
derline case, the force of inertia’s and gravity’s net force on the
ball m is normal to the left slope (so that the ball stay at rest
there). Consider the net forces acting on the balls. Their com-
ponents normal to the surface they rest on are F⃗⊥1 and F⃗⊥2.
These are equal to the normal forces N⃗1 and N⃗2 acting on the
balls and therefore have to have equal magnitudes (F⊥1 = F⊥2)
to ensure that the force balance is achieved horizontally for the
wedge-block.

26. Let’s take the displacement ξ of the wedge as coordin-
ate describing the system’s position. If the wedge moves by
ξ, then the block moves the same amount with respect to the
wedge, because the rope is unstretchable, and the kinetic en-
ergy changes by Π = mgξ sin α. The velocity of the wedge is
ξ̇ and that of the block is 2ξ̇ sin α

2 (found by adding velocit-
ies, where the two vectors ξ̇ are at an angle α), therefore the
net kinetic energy K = 1

2 ξ̇2(M + 4m sin2 α
2 ). Then we find

Π′(ξ) = mg sin α and M = M + 4m sin2 α
2 ; their sum gives the

answer.

27. Again, let’s take the wedge’s displacement as the coordin-
ate ξ; if the displacement of the block along the surface of
the wedge is η, then the centre of mass being at rest gives
η(m1 cos α1 + m2 cos α2) = (M + m1 + m2)ξ. From here one
can extract η as a function of ξ, but to keep the formulae brief
it’s better not to substitute this expression everywhere. The
kinetic energies of the block can be found as sums of horizontal
[ 1

2 mi(ξ̇ − η̇ cos αi)2] and vertical [ 1
2 mi(η̇ sin αi)2] energies.

28. When writing down energy conservation, note that the
block’s velocity is twice the cylinder’s velocity horizontal com-
ponent and that the latter is equal to the vertical component,
too (why?). Project Newton’s 2nd law onto the axis that passes
through the top corner of the step and the cylinder’s centre:
this axis is perpendicular both to the normal force between
the block and the cylinder and to the cylinder’s tangential ac-
celeration. Second question: the ratio of two normal forces
is constant (why? what is it equal to? Hint: compare the
horizontal accelerations of the cylinder and the block and re-
member Newton’s 2nd law), therefore they will be equal to zero
at the same instant.

29. By projecting Newton’s 2nd law on the axis in the direction
of the normal force we see that the normal force is the smallest
at the bottommost point of the trajectory’s arch-shaped part.
(There, the centripetal acceleration is the largest, gravitational

force’s component along the axis is the smallest).

30. The energy of the "pellet & block" system is always con-
served; momentum will only start to be conserved once the
pellet passes the bottommost point. When it arrives there for
the second time, the block’s velocity is maximal (why?).

31. Let’s apply Idea no. 46 for P⃗ : the system’s net momentum
is P = ωlm + 2ωlM , net force F = (m + M)g − T . The
same using rotational considerations: with respect to the left-
most ball’s initial position, the angular momentum is l(2ωl)M
(velocity is 2ωl, the velocity’s lever arm — l); net torque is
(T + Mg)l. Now, for the formula given in Idea no. 46 we need
the angular acceleration ε = ω̇. Let’s find it using Method no.
6: Π = lφ(m + 2M), K = 1

2 φ̇2l2(m + 4M). Another solution
route: the ratio of accelerations is 1:2; there are four unknowns
(two normal forces, acceleration and string tension); equations:
three force balances (for either ball and the rod) and one torque
balance (wrt the left endpoint of the rod).

32. Method no. 6: for the generalized coordinate ξ we can use
the displacement of the thread’s endpoint. Ideas no. 34,12: the
change of the system’s CM y-coordinate is ξρh/M (h — the
difference in the heights of the thread’s endpoints, M — the net
mass of the system; assume that ξ ≪ h). For the x-coordinate
it’s 2ξρR/M .

33. ⟨T (1 + cos α)⟩ = 2mg, T = ⟨T ⟩+ T̃ , where |T̃ | ≪ T . Based
on the Idea no. 20 we ignore the tiniest term

⟨
T̃α2⟩ and note

that
⟨
α2⟩ > 0.

34. We have to consider two options: either all the bodies move
together, or the rightmost large block moves separately. Why
cannot the situations occur where (a) all three components
move separately, or (b) the left large block moves separately?

35. After the collision the ball’s trajectories are orthogonal
crossing straight lines; the angle with respect to the initial tra-
jectory is determined by how much the collision was off-centre.

36. For slightly non-central motion: what will be the direc-
tion of momentum of the ball that was first to be hit? Now
apply the Idea no. 52 again. Central motion: express the ve-
locities after the collision via the horizontal component of the
momentum px that has been transferred to one of the balls.
What is the transferred vertical component py? Energy con-
servation provides us an equation to find py (it is convenient
to express the energy as p2/2m).

37. The graph looks like n intersecting straight lines; the inter-
section point of a pair of straight lines corresponds to a collision
of two balls (the graph of either ball’s motion is a jagged line;
at a collision point the angles of the two jagged lines touch one
another so that it looks as if the two straight lines intersect).

38. Initial velocities in the centre of mass: mv
m+M , Mv

m+M , final
velocities are zero; friction does work: µmgL.

39. Based on the figure we immediately obtain (to within a
multiplicative constant) the magnitudes and directions of the
momenta, but not which momentum is which ball’s. It is ne-
cessary to find out where the ball marked with an arrow will
proceed after the collision. Fact no. 27 will help choose from
the three options.
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40. Energy: in time dt the distribution of the liquid will change:
there is still some water at the centre, but a certain mass dm

has been displaced from above to the level of the tap (and then
through the tap), so the change in the system’s potential en-
ergy is gH · dm. Momentum: the water in the barrel obtains
the total momentum ρgHS ·dt from the walls. This momentum
is passed on to the stream of water with the mass ρSv · dt.
41. Energy is not conserved: the grains of sand slip and exper-
ience friction. In time dt the sand landing on the conveyor belt
receives momentum dp = v · dm = vµ · dt from the belt: the
force between the freshly fallen sand and the belt is F1 = dp/dt.
The sand already lying on the belt experiences the gravitational
force mg which is compensated by the component of the fric-
tion parallel to the belt, F2 = mg cos α, where m = σL is the
mass of the sand on the belt and σv = µ. The minimization
has to be done over v.
42. During the collision ∆p⊥ =

√
2gh.

43. Consider a short section of the path along the hill with
length dl. In addition to the change in the potential energy
work is done to overcome friction, dAh = µmg tan α · dl. WE
find dAh = C · dx, where C is a constant. Summing over all
such little path increments dl we find Ah = C∆x.
44. The kinetic energy K = m

2 ẋ2 + Mẋ2, where x is the dis-
placement along the slanted surface; Π = (M + m) sin α. Hav-
ing found the acceleration a we change into a reference frame
(of the cylinder) moving with acceleration a (Ideas no. 7 and
8), where the block is being displaced along the effective accel-
eration due to gravity — as low as possible.
45. According to the Ideas no. 61 and 62, the angular mo-
mentum of the rod before the collision is L0 = Mlv − 1

3 Ml2ω;
after the collision L1 = Mlv′ − 1

3 Ml2ω′; L1 = L2. The expres-
sion for energy is K = 1

2 Mv2 + 1
6 Ml2ω2. The condition for

being at the end: v′ + lω′ = 0 (we consider ω to be positive if
the rotation is in the direction marked in the figure).
46. The angular momentum with respect to the impact point
before the collision: mv(x − l

2 ) − I0ω, where v = ω l
2 and

I0 = 1
12 ml2.

47. The instantaneous rotation axis passes the contact point of
the cylinder and the floor; its distance from the centre of mass
does not change, so we can use Idea no. 65; I = 3

2 mR2.
48. Let us direct the z axis upward (this will fix the signs of the
angular momenta). The final moment of inertia with respect
to the x-axis is − 7

5 mvyR−muR and with respect to the y-axis
is 7

5 mvxR.
49. Immediately after the first collision the centres of masses
of both dumbbells are at rest, the velocities of the colliding
balls reverse direction, the non-colliding balls’ velocities don’t
change. Both dumbbells act like pendula and complete half
an oscillation period, after which the second collision occurs –
analogous to the first one.
50. The grains of sand perform harmonic oscillations in the
plane perpendicular to the cylinder’s axis — like a mathemat-
ical pendulum of length l = R in the gravitational field g cos α;
along the axis there is uniform acceleration (a = g sin α). Fo-
cussing occurs if the time to cross the trough along its axis is
an integer multiple of the oscillation’s half-period.

51. Observing the equilibrium position we conclude that the
centre of mass lies on the symmetry axis of the hanger. The
three suspension points must be located on the two concentric
circles mentioned by Idea no. 69. Therefore one of the circles
must accommodate at least two points out of the three, while
the circles’ centre (the hanger’s centre of mass) must lie in-
side the region bounded by the hanger’s wires on its symmetry
axis. There is only one pair of circles that satisfies all these
conditions. Computing the radii l1 and l2 of the circles using
trigonometry we determine the reduced length of the pendulum
l1 + l2 and, using that, the oscillation period.

52. The effective mass of the moving water can be found using
the acceleration of the falling ball. For the rising bubble the ef-
fective mass is exactly the same, the mass of the gas, compared
to that, is negligibly small.

53. The water stream could be mentally divided into two parts:
the leftmost stream will turn to the left upon touching the
trough, the rightmost — to the right. Thus, two imaginary
’water tubes’ form. In either tube the static pressure is equal
to the external pressure (since there is the liquid’s outer sur-
face in the vicinity): according to Bernoulli’s law, the velo-
city of the liquid cannot change. Based on the conservation of
momentum horizontally, the momentum flows of the left- and
right-flowing streams have to add up to the original stream’s
momentum flow’s horizontal component. Note that due to con-
tinuity, µ = µv + µp.

54. Due to continuity (u + v)(H + h) = Hu Const, where
h = h(x) is the height of the water at point x and v = v(x)
is the velocity. We can write down Bernoulli’s law for an
imaginary ’tube’ near the surface (the region between the
free surface and the stream lines not far from the surface):
1
2 ρ(u+v)2 +ρg(H +h) = 1

2 ρu2 +ρgH = Const. We can ignore
that small second order terms (which include the factors v2 or
vh)

55. The phase trajectory is a horizontal rectangle with sides L

and 2mv, where L is the distance from the block to the wall;
the adiabatic invariant is thus 4Lmv.

56. Consider the balance of torques. For the net force vectors
of the normal and frictional forces, when you extend them,
their crossing point must be above the centre of mass.

57. Let’s write down Newton’s 2nd law for rotational motion
with respect to the crossing point of the normal forces: the an-
gular momentum of the bug is L = mvl sin α cos α, the speed of
change of this angular momentum will be equal to the torque
due to gravity acting on the bug (the other forces’ lever arms
are zero). When computing the period, note that the accel-
eration is negative and proportional to the distance from the
bottom endpoint, i.e. we are dealing with harmonic oscilla-
tions.

58. The blocking occurs if the net force of normal and frictional
forces pulls the rod downwards.

59. Once the blocking occurs we can ignore all the forces apart
from normal and frictional ones. Suppose it has occurred.
Then the net frictional and normal forces acting from the left
and from the right have to balance each other both as forces
and torques, i.e. lie on the same straight line and have equal
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magnitudes. Thus we obtain the angle between the surface
normal and the net force of friction and normal force.

60. Consider the direction of the torque acting on the plank
with respect to the point of contact, when the plank has turned
by an angle φ: the contact point shifts by Rφ, the horizontal
coordinate of the centre of mass shifts by the distance h

2 φ from
the original position of the contact point.

61. The only force from the surface on the system vessel &
water is equal to the hydrostatic pressure ρghπR2; it balances
the gravitational force (m + ρV )g. Note that H = R − h.

62. The gravitational potential of the centrifugal force is 1
2 ω2r2,

where r is the distance from the rotation axis.

63. Assume the reference frame of the large block (which moves
with acceleration a). Where does the effective gravity (the net
force of the gravity and the force of inertia) have to be dir-
ected? What is a? With which acceleration does the little
block fall in this reference frame? What is the tension T of the
thread? Having answers to these questions we can write down
the equilibrium condition for the large block ma = T (1−sin α).

64. Let us use the displacement of the sphere (down the in-
clined surface) as the generalized coordinate ξ. What is the
displacement of the sphere (up the other inclined surface)?
Evidently Π = (m − M)gξ sin α. The normal force between
the two bodies can be found by projecting Newton’s 2nd law
onto the inclined surface’s direction.

65. Let the displacement of the large cylinder be ξ, the ho-
rizontal displacement of the middle and the leftmost cylinder,
respectively, x and y. What is the relationship between them
given that the centre of mass is at rest? What is the rela-
tionship between them given that the length of the rods does
not change? From the two equations thus obtained we can ex-
press x and y via ξ. If we assume the displacement to be tiny,
what is the relationship between the vertical displacement z of
the middle cylinder and the horizontal projection of the rod’s
length, ξ − x? Knowing these results, applying Method no. 6
is straightforward.

66. Where is the small displacement ξ of the sphere direc-
ted (see Idea no. 31)? What is the displacement of the ring
expressed via ξ? Use Method no. 6.

67. Use Idea no. 40 along with energy conservation by pro-
jecting the force and the acceleration in the Newton’s 2nd law
radially.

68. Let us use some ideas from kinematics to find the accel-
eration of the sphere (K1, K29 and K2: by changing into the
reference frame moving with velocity v we find the component
of the sphere’s acceleration along the rod and by noticing that
the horizontal acceleration of the sphere is zero, we obtain, us-
ing trigonometry, the magnitude of the acceleration). Now use
Newton’s 2nd law.

69. Using the velocity v of the sphere we can express the velo-
city of the block at the moment being investigated (bearing in
mind that their horizontal velocities are equal). Using Idea no.
40 we find that the block’s (and thus the sphere’s) horizontal
acceleration is zero; by using Newton’s 2nd law for the sphere
and the horizontal direction we conclude that the tension in

the rod is also zero. From the energy conservation law we ex-
press v2 and from Newton’s 2nd law for the sphere and the axis
directed along the rod we obtain an equation wherein hides the
solution.

70. Using Newton’s 2nd law investigate whither the system’s
centre of mass will move — to the left or to the right (if the
centre of mass had not move, then the both events would have
happened at the same time).

71. To answer the first part: show that the force perpendicular
to velocity is zero (use Method no. 3 and Idea no. 27). To
answer the second part use Method no. 3 and idea 56.

72. Due to the length of the thread there are no horizontal
forces, i.e. the horizontal component of momentum is con-
served, and so is the energy. From the two corresponding equa-
tion the limiting velocity v = v0 can be found, for which the
bottom sphere ascends exactly to the height of the top one.
Note that at that point its vertical velocity is zero, cf. Idea no.
44.

73. Use Idea no. 51. Options: all block keep together;
everything slides; the top one slides and and the bottom two
stay together (why is it not possible that the top two keep
together and the bottom one slides?).

74. Which conservation law acts when the two boys collide
(during a limited time of collision) — do we consider the colli-
sion absolutely elastic or inelastic (can momentum be lost and
where? If it is inelastic, where does the energy go?), see Idea
no. 58? After the collision: the common acceleration of the
two boys is constant, knowing the initial and final velocities
finding the distance becomes an easy kinematics problem.

75. Prove that for a vertical thread the velocity v is max-
imal (by applying Idea no. 44 for the rotation angle of the
rod show that its angular velocity is zero in that position; use
Idea no. 61). Then it only remains to apply energy conser-
vation (remember that ω = 0). For the acceleration a, let
us use idea 44 and notice that horizontal acceleration of the
centre must be zero; this follows from the Newton’s 2nd law for
the horizontal motion (there are no horizontal forces at that
moment). Further, notice that the vertical coordinate of the
centre of mass is arithmetic average of the coordinates of the
endpoints, xO = 1

2 (xA + xB); upon taking time derivative we
obtain ẋO = ẋA

2 and ẍO ≡ a = ẍA

2 (keep in mind that xB is
constant). Hence, the acceleration of O can be found as half of
the vertical acceleration of the rod’s upper end A; this is the
radial, i.e. centripetal component of the acceleration of point
A on its circular motion around the hanging point. Finally, for
the tension force T we have now one equation T +N−mg = ma,
but we need still another one. To obtain that, we need to con-
sider angular motion of the rod in the frame of O. At the given
moment of time, our new frame moves translationally to right
with speed v, and with upwards acceleration a. The torque
with respect to the centre of mass is caused only by T and N

(gravity and inertial forces have zero arm). So we can relate
T − N to the angular acceleration of the rod via Newton’s 2nd

for angular motion. To find angular acceleration, let us no-
tice that in the laboratory frame, the speeds of A and O are
equal; indeed, both velocities are horizontal (vertical velocity
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of A is zero because it is the lowest point of its trajectory, and
ẋO = ẋA

2 ), and using the kinematics idea 35 (projections of
the velocities to the direction of the rod must be equal) we can
conclude that the velocities must be also equal. Thus, in the
moving frame, the speed of point A is zero and so is its cent-
ripetal acceleration. Hence, the acceleration must be perpen-
dicular to the rod; we know the vertical component 2a of this
acceleration and using trigonometry can deduce its modulus.
With this acceleration, we can find the angular acceleration of
the rod.

76. Find the instantaneous rotation axis (make sure that its
distance from the centre of mass is 1

2 ). Prove that the centre of
mass moves along a circle centred at the corned of the wall and
the floor, whereas the polar coordinate of the centre of mass
on that circle is the same as the angle φ between the wall and
the stick. Express the kinetic energy as a function of the deriv-
ative φ̇ of the generalized coordinate φ using the parallel-axis
(Steiner’s) theorem and express the energy conservation law as
ω2 = f(φ); using Method no. 6 we obtain ε = ω̇ = 1

2 f ′(φ).
When the normal force against the wall reaches zero, the accel-
eration of the centre of mass is vertical: present this condition
using the tangential and radial accelerations of the centre of
mass on its circular orbit ( l

2 ε and l
2 ω2 respectively) and use it

as an equation to find φ.

77. Based on Idea no. 64 we find that ω = 6v/l. Using energy
and momentum conservation we eliminate the puck’s velocity
after the collision and express the mass ratio.

78. The forces along the normal to the surface are elastic forces,
so the energy in vertical direction is conserved during the colli-
sion: after the collision the corresponding velocity component
is the same as before. To find the other two unknowns, the
horizontal and angular velocities, we can obtain one equation
using Idea no. 64. The second equation arises from (a) the
condition that the velocity of the ball’s surface is zero at the
contact point (no sliding; (b) the equation arising from 60).

79. Using the idea 51 we investigate the sliding and rolling
regimes. In the latter case the quickest way to find the answer
is to use Idea no. 65.

80. The velocity can be found from the conservation laws for
energy and momentum (note that the hoop is moving transla-
tionally). To find the acceleration it is convenient to use the
non-inertial reference frame of the hoop, where the centripetal
acceleration of the block is easily found. The condition for the
radial balance of the block gives the normal force between the
block and the hoop (don’t forget the force of inertia!); the ho-
rizontal balance condition for the hoop provides an equation
for finding the acceleration.

81. Let us assume the block’s velocity to be approximately
constant. For a certain time tl the base slides to the left with
respect to the block and the momentum imparted by the fric-
tional force at that time is also directed to the left. During the
remaining time tr the base slides to the right with respective
momentum directed to the right as well. The equilibrium con-
dition is that the two momenta have equal magnitudes; hence
we ding the equilibrium value of tl/tr. From the graph we find
the velocity for which that ratio has the needed value.

82. As the water flows against the paddles it obtain the same
vertical velocity u as the paddles themselves. This allows us
to compute the momentum imparted to the paddle per unit
time (i.e. the force), which ends up being proportional to the
difference: F ∝ (v − u). From there, it is not very hard to find
the maximum of the power Fu.

83. In the reference frame of the board the problem is equival-
ent to the problem no. 52.

84. Go into the (accelerated) reference frame of the wagon,
where the effective gravity

√
a2 + g2 is at a small angle with

respect to the vertical. The load will oscillate yet remain mo-
tionless at the end if the cable is vertical at the stopping mo-
ment and the load’s velocity is zero. It is possible when the
corresponding position is the maximal deviation during the os-
cillation. Therefore the oscillation amplitude has to be the
same both during the acceleration and deceleration, so that
even when the deceleration begins the cable has to be vertical.
In that case, how are the acceleration time and the oscillation
period related?

85. If the shockwave is at the point where the intersection area
of its wavefront and the considered body is S, then what is the
force acting on the body? Let us assume that the body stays
(almost) at the same place as the shockwave passes it. Then
the momentum imparted during the time dt can be found using
the cross-sectional area S and the distance dx = cs · dt covered
by the wavefront. Note that S · dx is the volume element. Fi-
nally we sum over all imparted momenta.

86. The rod will act like a spring (since the rod is thin and
made out of steel, while steel is elastic). After the left sphere
has collided with the stationary sphere, the latter will acquire
velocity v0 and the former will stay at rest. Then the dumb-
bell, as a system of spheres and springs, will begin oscillating
around its centre of mass. What is the velocity of the centre
of mass? Convince yourself that after half a period the single
sphere is already far enough that the left sphere is not going
to collide with it again. The oscillations of the dumbbell will
decay little by little — so some energy will be lost there.

7 ANSWERS
1. arcsin Rµ

(R+l)
√

µ2+1
.

2. arcsin m
M+m

µ√
µ2+1

.

3. mg/2.

4. a) µmg/
√

1 + µ2; b) mg sin(arctan µ − α).

5. µ ≥ |g sin α−a cos α|
g cos α+a sin α , if g + a tan α > 0.

6. a) ω2R ≥ g
√

1 + µ−2;
b) ω2R ≥ g

√
1 + µ−2, if µ < cot α and

ω2R ≥ g(cos α + µ−1 sin α) if µ > cot α

7. v = 3
√

gR

8. v/2.

9. tan 2α = h/a

10. µ1 ≥
√

l2 − h2/h

11. 3mg
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7. ANSWERS

12. 2 arctan[(1 + m
M ) cot α]

13.
√

2HLµ + µ2H2 − µH ≈
√

2HLµ − µH ≈ 7.2 m.

14. a) ω2 < g/l ; b) ω2 < (2 −
√

2)g/l

15. 1
2 (1 − 3−1/2)ρv ≈ 211 kg/m3

16. π
3 ρR3

17. v/
√

µ2 cot2 α − 1

18. 4
3 πGr3∆ρ/g(r + h) ≈ 0.95 cm

19. −ω

20. µmgv/ωR

21. cos φ tan α < tan 30◦

22. L − πR/2 cos α; 2π
√

L/g

23. 1
12 mg, 1

3 mg, 7
12 mg

24. mg/(2M + m)

25. m < M cos 2α.

26. mg sin α/[M + 2m(1 − cos α)] =
mg sin α/[M + 4m sin2 α

2 ].

27. g (m1 sin α1−m2 sin α2)(m1 cos α1+m2 cos α2)
(m1+m2+M)(m1+m2)−(m1 cos α1+m2 cos α2)2 .

28. mg(5
√

2 − 4)/6); Simultaneously.

29. cos α ≥ 1
3 (2 + v2/gR)

30. 2 m
M+m

√
2gR

31. mMg/(m + 4M)

32. Fx = 2Raρ, Fy = (m + ρL)g − ρ(L − πR − 2l)a, where
a = ρg(L − πR − 2l)/(m + ρL).

33. The one that had not been pushed.

34. If F ≤ 2µmg m+M
2m+M : a1 = a2 = 1

2
F

M+m ; otherwise
a1 = F

M − µg m
M , a2 = µg m

2m+M .

35. On a half-circle.

36. (a) v/5; (b) v/4.

37. n(n − 1)/2

38.
√

2µgL(1 + m
M )

39. 3.5; was coming from below right.

40. A:
√

2gh ;
√

gh.

41. 2Rµ
√

gl sin α,
√

gl sin α.

42. u − µ
√

2gh.

43. mg(h + µa).

44. arctan 2
5 ≈ 21◦48′.

45. (a) (3v − ωl)/4; (b) (v − ωl)/2.

46. At a distance 2l/3 from the holding hand, where l is the
length of the bat.

47. 2
3

F
M

a
R

48. (vx0, vy0 − 5
7 u)

49. L/v0 + π
√

m/2k

50. 1
2 π2(n + 1

2 )2R tan α

51. 1.03 s

52. 2.0 g

53. v1 = v2 = v; cot2 α
2

54.
√

gH.

55. 5 m/s.

56. (a) tan ≤ 2µ ; (a) impossible.

57. g(1 − x
l ) sin−1 α; π

2

√
l sin α/g

58. µ < cot α.

59. µ1 < tan α
2 and µ2 < tan α

2 .

60. R > h/2

61. 3
√

3m/πρ

62. ω2R2/2g

63. M/m = (1−sin α)2

sin α .

64. 2mM
M+m g tan α

65. g/9.

66. g m+M
m+M sin2 α sin2 α.

67. 2/3R

68. m[g − v2(2l − x)/
√

2l2]

69. M/m = 4, u =
√

gl/8.

70. The first one arrives first

71. A straight line; if ω ̸= 0

72.
√

2gl(1 + m/M)

73. F
3m , if F

mµg < 6; F
4m + 1

2 µg, if
6 < F

mµg < 10; 3µg, if F
mµg > 10

74. m2v2/2(M2 − m2)µg

75. v =
√

(l − H
2 )g, a = g

2 (1 − H
2l ), T = mg

4 (3 − H
2l + l

6H ).

76. arccos 2
3 ≈ 48◦12′

77. M/m = 4.

78. (a) ω = 5v0/7R, vx = 5v0/7, vy =
√

2gh;
(b) vy =

√
2gh, vx = v0 − 2µvy,

ω = 5
√

2ghµ/R.

79. 5
7 g sin α, if µ > 2

7 tan α, otherwise g sin α − µg cos α

80.
√

2gr
m+M

1+cos φ
m sin2 φ+M m cos φ;

gm sin 2φ
m sin2 φ+M [ 1

2 + m2 cos φ(1+cos φ)
(m sin2 φ+M)(m+M) ]

81. 0.6 m/s

82. 1
4 27µv2

83. 2 cos(45 − α/2)v/ cos α

84. n−2Lg/4π2l, n = 1, 2, . . .

85. (a),(b) (p1 − p0)V/mcs.

86. 1
2 v0; no, a fraction goes into the longitudinal oscillations of

the rod and then (as the oscillations die) into heat
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