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Introduction
When we learn something new, we always try to interpret the
new in terms of old familiar notions. In the case of quantum
mechanics, it appears that there are no particles as we know
them from classical mechanics — point masses or bodies with
a certain mass and velocity. Instead, any particle is to be de-
scribed by what is called a wavefunction. Using the concepts
of classical mechanics one can say that a quantum-mechanical
particle is to be described as a wave, but while being a wave, it
can still exhibit particle-like properties. It turns out that these
seemingly particle-like properties can still be explained using
wave considerations. Let us dive in! The text in small print
can be omitted on the first reading.

Wavefunction
In classical mechanics, the state of a particle without internal
degrees of freedom1 can be completely described by its mo-
mentum and co-ordinate; in quantum mechanics, the com-
plete state of a particle is described by its so-called wavefunc-
tion Ψ, which is generally a complex number and which could
be represented, for example, as a function of co-ordinates and
time, like so: Ψ = Ψ(x, y, z, t). The probability to find the
particle at time t at position with co-ordinates x, y and z is
then proportional 2 to the modulus-squared of the complex
wavefunction, |Ψ|2 = Ψ(x, y, z, t)Ψ∗(x, y, z, t), where Ψ∗ is the
complex conjugate of Ψ. What is actually meant by "finding"
the particle at a given point of space is actually a tricky ques-
tion, we will return to it later. In short, this is a short-hand
for saying that a measurement has been conducted to find the
position of the particle, and the result of that measurement
was (x, y, z).

The example of the photon could be helpful to understand
the idea of the wavefunction: the real part of the photon’s
wavefunction is the electric field vector and the imaginary part
is the magnetic field vector (this statement is true in the Gauss
system of units; in SI, the wavefunction’s imaginary part is the
product of the magnetic induction and the speed of light). The
probability to find a photon at any point is proportional to the
electromagnetic energy density (light intensity) at that point.

Comparing the electron and the photon we should note that for
photons one uses a vectorial wavefunction, for electrons — a scalar one.
The difference arises because the angular moment of a photon about an
axis through its "centre of mass" can have three different values (which
correspond to linear and two circular — clockwise and counter-clockwise

— polarisations). We will not discuss this nuance further.

Energy and momentum in Quantum Mechanics
In quantum mechanics, the so-called stationary states or ei-
genstates of energy play an important role. In such a state,

the particle has a well-defined single value of energy E (the
so-called eigenvalue).

There are at least two good reasons for this. Firstly, any state of a
quantum-mechanical system is representable as a superposition of station-
ary states (exactly in the same way as the random motion of connected
oscillators is representable as a superposition of normal modes). Secondly,
generally a quantum system that has been brought of the state of equilib-
rium will quickly find itself in a state with the lowest possible energy such
that no conservation laws are violated. After all, the lowest energy is also
a well-defined, unique energy.

It turns out (the reason being the Schroedinger equation,
which could be considered as a postulate of quantum mechan-
ics), that in a state with a well-defined energy E the wavefunc-
tion evolves as follows: Ψ(x, y, z, t) = ψ(x, y, z)e−iEt/~, so that
the wavefunction oscillates with angular frequency ω, which is
related to the energy by the important formula

E = ~ω = hν. (1)
The linear frequency ν = ω/2π; the quantity h is known as
Planck’s constant, while ~ = h/2π is better known as the re-
duced Planck’s constant.

Note that the energy in (1) is the total (kinetic plus po-
tential) energy of a quantum-mechanical system (e.g. of a
particle), while the zero-level of potential energy could be freely
chosen. Note how a change of the zero level of the potential
energy by a value U means that the wavefunction gets multi-
plied by an extra factor eiUt/~ (this statement also holds for
non-stationary states), which does not at all alter the physic-
ally tangible quantity — the probability of finding the particle

— because the modulus of this factor is still just unity. There
are some important practical lessons to be learned from this:
(a) For motion and collisions of non-relativistic electrons and
neutrons, one can use the expression for non-relativistic kinetic
energy, p2/2m, as the particles don’t vanish and it makes sense
to measure the kinetic energy with respect to the motionless
state (in other words, the rest mass energy can be ignored);
(b) For photon absorption and emission, it is natural to use the
relativistic energy expression E = mc2;
(c) The zero level of potential energy can be chosen arbitrarily.

In quantum mechanics, energy conservation law could be
regarded as the condition for resonance. Suppose there is a
system with two energy levels E1 < E2. Suppose the system
transfers from the low-lying energy state to the other state by
absorbing a particle (a photon for concreteness) with energy E3.
Energy conservation law then reads E2 = E1 +E3, which could
be re-written using angular frequencies in the form ω2−ω1 = ω3.
On the left hand side of the equation is the angular frequency
of the system’s wavefunction, if we chose the zero level of en-
ergy to be at E = E1, while on the other side of the equation
is the frequency of the photon. Therefore the interaction (ab-
sorption of the photon) can only happen if the condition for
resonance is fulfilled: the electromagnetic frequency is equal to
the difference in frequencies of the two stationary states.

Consider a quantum-mechanical simple harmonic oscillator:
a particle that moves in parabolic potential (potential energy

1Such an internal degree of freedom could be, for example, rotation about its own axis.
2In non-relativistic quantum mechanics the particles are never created nor destroyed, and the probability to find the particle in all space is therefore

unity. Hence the integral of |Ψ|2 over all space must also be equal to unity. Performing the integral fixes the constant in front of the wavefunction —
we are normally referring to just that constant when we say, in the following, that the wavefunction is proportional to something.
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is proportional to the square of the displacement from equilib-
rium). Suppose the classical angular frequency of this particle
is ω0. This oscillator can go from one quantum-mechanical
energy level (Ei) to another (Ej , corresponding to higher
amplitude oscillations) by absorbing (n = 1, 2, 3 . . .) photons.
These photons are electromagnetic waves, which have to be in
resonance with the oscillator, so that the electromagnetic angu-
lar frequency has to be equal to the eigenfrequency of the oscil-
lator ω0. From the energy conservation law Ej −Ei = ~nω0 we
deduce that the energy levels of the simple harmonic oscillator
have to be of the form

En = ~nω0 + C.

A rigorous solution of Schroedinger’s equation shows that for the zero
level of potential energy at the minimum of the potential, the constant
C = ~ω0/2.

This result can easily be generalised unto oscillators with m degrees
of freedom. From classical mechanics we know that in this case, the sys-
tem has m eigenfrequencies ωj , j = 1, 2, . . .m. j-th eigenfrequency can be
excited if the resonance condition is satisfied, so that the electromagnetic
frequency is ωj . Therefore one has to employ m different integers nj to
describe the stationary energy levels of such an oscillator:

E =
∑m

j=1~ωjnj + C.

This energy expression looks just as if we had different particles — of
energies ωj , j = 1, 2, . . .m — and the integers nj describe the numbers
of these particles. In case of elastic oscillations (standing waves) of the
crystal lattice these so-called quasi-particles (so not truly real, physical
particles) are called phonons.

We have seen that the energy of the oscillator is quantized,
it can only assume certain discrete values.

As we have seen, in a stationary state the time-dependence
of the wavefunction is known, and therefore the interesting
part is its spatial dependence ψ(x, y, z). It turns out (from
Schroedinger’s Equation) that in a state with uniquely defined
momentum p⃗, the wavefunction is a sinusoidal plane wave,
ψ = eik⃗r⃗, where the wave vector k⃗ is related to momentum
through the formula

p⃗ = ~k⃗ (2)
Wave vector points along the direction of the wave’s propaga-
tion, and its modulus is k = 2π/λ, where λ is the wavelength.
The function ψ = eip⃗r⃗/~ is called an eigenfunction of mo-
mentum.

Note that for a particle, the group velocity of the wavefunction con-
sidered as a wave is equal to the particle’s classical velocity: ~ω =
p2/2m = (~k)2/2m + U . Upon differentiating, this gives vg = dω

dk
=

~k/m = p/m = v. This also holds for photons: ~ω = mc2 = pc = ~kc,
and vg = dω

dk
= c.

Wavefunction as a function of momentum
As seen before, the wavefunction of a particle with well-defined
momentum is a sinusoidal plane wave that fills the whole space,
so that the position of the particle is entirely unknown.

The square of the modulus of the wavefunction |ψ(r⃗)|2 ≡
|ψ(x, y, z)|2 gives the probability to find the particle at a given
point. This statement should be considered as a postulate given
on empirical (experimental) basis. The question of what is ac-
tually meant by “finding the particle” will be addressed later.
For the moment, it is important to note that the wavefunction
can not only be given as a function of the co-ordinate r⃗, but also
as that of the momentum p⃗ ≡ (px, py, pz), or ψ = ψ(p⃗) ≡ ψp⃗.

Here, we are dealing with a mathematical trick (called “Four-
ier analysis”), where an arbitrary wavefunction can be repres-
ented as the sum of various states of well-defined momentum,
ψp⃗e

ip⃗r⃗/~. In this representation, the square of the absolute
value of each component’s amplitude |ψp⃗|2 gives the probab-
ility to find the particle with the corresponding momentum
p⃗ (generally, the amplitude ψp⃗ is complex number whose ar-
gument gives the phase-shift of the corresponding component
wave).

Let us approach the issue mathematically. Fourier analysis tells
us, that any function f(x) could be represented as the sum of sinus-
oidal functions, f(x) = 1√

2π

∫ ∞
−∞ fke

ikxdk, where the quantity fk =
1√
2π

∫ ∞
−∞ f(x)e−ikxdx, which depends on the wave vector k, is called a

Fourier component of the function f(x). Changing the variables k → p/~,
we can write the given integral for the wavefunction in the form

ψ(x) =
1

√
2π~

∫ ∞

−∞
ψpe

ipx/~dp, (3)

where the factor

ψp =
1

√
2π~

∫ ∞

−∞
ψ(x)e−ipx/~dx. (4)

Formulae (3,4) are not for learning by heart at this point, but to supply
evidence to this statement: each wavefunction can be represented as a su-
perposition of states (wavefunctions ψ = eipx/~) such that the momentum
has a well-defined unique value p; the amplitudes ψp of those states can
be regarded as providing the dependence of the given wavefunction on
momentum.

To make a further comparison, consider the state where the particle
has a well-defined unique co-ordinate x0; then its wavefunction is ψ =
δ(x − x0). The function δ(x) is called the Dirac delta-function (the area
under the graph of this function is 1 and it only has a non-zero value at
point x = 0).

Now we can express an arbitrary wavefunction ψ(x) as a superposition
where every component has a unique co-ordinate:

ψ(x) =
∫

ψ(x0)δ(x− x0)dx0.

Note that on the right hand side of the equality sign, the prefactor in
front of the state of well-defined position δ(x − x0) is the initial function
ψ(x) at position x = x0, whose modulus-squared is the probability to find
the particle at x0. Therefore it should not be surprising that in (3), the
modulus-squared of the prefactor in front of eipx/~ (which is |ψp|2) gives
the probability to find the particle with momentum p.

The transfer from the function ψ(x) to another ψp could be regarded
as a spatial rotation in the functional (Hilbert) space (where the function ψ
is a vector), because just as in the ordinary spatial rotation formulae, the
new co-ordinates of the vector ψp are represented through the linear com-
bination of the old co-ordinates ψ(x). The only difference is that as the
number of co-ordinates in ordinary spaces is finite, the linear combination
is written with a sum; in the Hilbert space, however, the set of co-ordinates
is uncountable (is a continuum), and therefore the sum is replaced by the
integral. While in the ordinary space a co-ordinate-independent vector is
signified with a small arrow upon the symbol, in the Hilbert space the
notation |ψ⟩ is normally used. Therefore |ψ⟩ represents the wavefunction
for which it is undecided or unimportant whether we should investigate
its dependence based on the co-ordinate x, momentum p or a different
physical quantity altogether.

The formulae above assume a one-dimensional motion, which can be
described with one co-ordinate x and momentum p. In three dimensions,
a single integral is replaced by triple integration (over x, y and z or over
px, py and pz), the product px by the scalar product p⃗ · r⃗ and the factor

1√
2π~

by a factor (2π~)−3/2.

The uncertainty principle
The uncertainty principle is a purely mathematical result,
which comes from the connection between the two represent-
ations of the wavefunction: in the co-ordinate and momentum
space (formulae 3,4). It is possible to prove that if one defines
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the co-ordinate and momentum uncertainties δx and δp as root-
mean-square deviations from the corresponding average values
x̄ and p̄, then the following inequality holds:

δx · δp ≥ ~/2. (5)
Mathematically, one can write these definitions as

x̄ ≡
∫ ∞

−∞ |ψ(x)|2xdx, p̄ ≡
∫ ∞

−∞ |ψp|2pdp,

δx ≡
√∫ ∞

−∞ |ψ(x)|2(x− x̄)2dx,

δp ≡
√∫ ∞

−∞ |ψp|2(p− p̄)2dp.

In inequality (5) equality is observed if the wavefunction is a
Gaussian, ψ(x) = π1/4(δx)−1/2e−x2/4(δx)2 ; in all other cases, it
is a strict inequality.

The uncertainty principle is often used in quantum-
mechanical estimations, where one replaces the inequality sign
with an approximate equality and the root-mean-square devi-
ations with characteristic widths ∆x and ∆p. In which case
would we get a more precise estimate, is it with the expression

∆x · ∆p ∼ h, (6)
∆x · ∆p ∼ ~ or ∆x · ∆p ∼ ~/2? The answers could differ by up
to 4π ≈ 13 times and an error this big should be avoided even
in estimates (even though when estimating, one cannot discard
as wrong even those answers that differ from the true answer
by a factor of, say, (2π)3 ≈ 248, by carefully thinking through
one’s actions it is normally possible to achieve the difference
by less than a factor of two). Let us investigate this question
on two concrete example wavefunctions, see the figures.

π-π 2π-2π 0 p/h

|ψp|2|ψ| 2

-1 1 x

δx

The first figure describes an equal probability for the particle
to be found along the x axis if its co-ordinate is in the range
−1 ≤ x ≤ 1, while outside of this range the particle cannot
possibly be found. This is exactly the type of distribution that
arises when an electron, photon etc. passes through a single
slit; in that case the probability distribution as a function of
momentum, |ψp|2, is exactly the same as the intensity distribu-
tion in the diffraction pattern (on the screen). We will normally
consider the typical width of the diffraction maximum to be of
the order of ∆p = π~ (it is approximately the width of the
peak at half-maximum). The probability |ψp|2 oscillates and
the oscillation amplitude is inversely proportional to the square
of momentum (see fig.); therefore the root-mean-square devi-
ation is not finite, δp = ∞. The uncertainty in the position is,
according to the integral above, δx = 1/

√
3, which is about 3,5

times smaller than the width of the slit ∆ = 2. Thus, we find
δp · δx = ∞ and ∆p · ∆x = 2π~ ≡ h.

5-5 0

p/h

|ψp|2 |ψ| 2
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x

δx
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The second figure represents the probability distribution
|ψ(x)|2 = (1 − x2)2 for |x| ≤ 1 and |ψ(x)|2 = 0 for |x| ≥ 1
of finding the particle. In this case the wavefunction ψ(x) is
continuous and therefore the probability distribution in mo-
mentum space is localised more strongly than in the case of
the slit, and the root-mean-square deviation of momentum is,
in fact, finite: δp ≈ 1,34. By computing the integral it is not
hard to find δx = 1/

√
7, so that δx · δp ≈ 0,507~ (and the

solution is close to the absolute minimum ~/2). Calculations
show that the widths of the two peaks at half-maximum are
∆p ≈ 3,6~ and ∆x ≈ 1,1. Thus ∆x · ∆p ≈ 4~ ≈ 0,63h.

The two given examples show that the estimate (6) is fitting
when one takes the characteristic widths of the interval as the
uncertainties ∆p and ∆x; the estimate (5) is valid for the root-
mean-square deviations (unless the localisation is weak and the
root-mean-square deviation is actually infinite).

The uncertainty principle for the pair px and x holds be-
cause the wavefunction for a state of definite px is a sinusoidal
function of x (and any state can be represented as a superpos-
ition of sinusoids for different px). Obviously the same thing
holds for py and y as well as for pz and z, but if we remember
formula (1), then it also holds for E and t (and, in fact, also
for angular momentum and the rotation angle) — the variables
forming such pairs are called conjugate variables. The connec-
tion between E and t is typically useful for describing for the
excited state of an atom or a molecule: if theoretically the
value of the energy in a stationary state is En, then due to
instabilities, collisions etc. the atom or molecule cannot reside
in that state for longer than some characteristic time τ . Thus,
its energy in the excited state will not be exactly En, but can
be in the range of width Γ around the central value En, where

Γ · τ ∼ h. (7)
The quantity Γ is called the width of the energy level and τ is
known as the excited level’s lifetime.

Quasi-classical approximation

If one wishes to obtain the precise forms of the stationary state
wavefunctions and corresponding energy levels, one will gener-
ally have to solve Schroedinger’s equation. However, one can
advance quite far (and sometimes even get the correct result)
by employing the so-called quasi-classical approximation (also
known as the WKB(J) approximation in the English-language
literature). In this approach, one first considers a particle mov-
ing in a known potential as a classical particle and finds the
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dependence of its momentum p on co-ordinate x. Then one
says that the particle’s wavefunction is almost a sinusoid with
a variable wave vector: ψ(x) ≈ exp[ i

~
∫
p(x)dx]. This is, of

course, an approximate relationship — the equality only holds
if the particle is free (the momentum is constant). Still, the
equality almost holds if the relative change of momentum in
one wavelength is small [so that |p(x) − p(x + ~/p)| ≪ p(x)].
Suppose this variable-wavelength wave propagates along the
x-axis or along a circular trajectory (e.g. in the case of an elec-
tron orbiting around an atom). If the particle moves in a poten-
tial well so deep that its walls keep reflecting it back, then the
wave is also reflected and starts bouncing (oscillating) back and
forth. The wave pattern is stable if there is an integer number
of wavelengths in one oscillation period (then a stationary wave
is formed). For example, if we are dealing with a potential well
with vertical walls and flat horisontal bottom of length L, then
the momentum inside the well is constant and the stationary
wave condition gives 2Lp = nh, which means that p = nh/2L
and the n-th energy level is En = p2/2m = n2h2/8L2m.

In a hydrogen atom, an electron of mass m orbits around
the nucleus in a symmetric potential well U = −kZe2/r (where
k = 1

4πε0
). The kinetic energy of an electron moving in a circu-

lar orbit is p2/2m = −U/2, therefore p2r = kmZe2. We write
the stationary wave condition as 2πrp = 2π~n (where n is the
number of stationary waves), and then rp = n~.

This last relation shows that the angular momentum rp is quantized.
It turns out that this conclusion is more general and is not only charac-
teristic of circular orbits: the angular momentum with respect to a fixed
axis can only be an integer number of ~ (an exception to this rule are
the so-called Fermi particles or fermions (for example, the electron): the
internal angular momentum — so-called spin — of fermions can only be
a half-integer number of ~. In the case of electrons, it is always ±~/2).

Combining these two last results, we find p = kmZe2/n~
and therefore the total energy

En = U/2 = −p2/2m = −m

2
(kZe2/n~)2.

Quantum tunnelling

Quantum tunnelling is a striking non-classical effect, where a
particle of energy E is capable of passing through a poten-
tial energy barrier U > E in a way, where beneath the bar-
rier it acquires a negative kinetic energy p2/2m = E − U .
A negative kinetic energy means an imaginary momentum
and wave vector k = i

~

√
2m(U − E), and the wavefunction

is no longer a sinusoid, but a decaying exponential function:
ψ(x) = e−x

√
2m(U−E)/~. Thus, if the width of the barrier L

is large [L
√

2m(U − E) ≫ ~], then the particle’s wavefunc-
tion drops exponentially below the barrier, and the particle
cannot pass through (is reflected). On the other hand, if
L

√
2m(U − E) ∼ ~, then the wavefunction still decays (the

particle is reflected back with a certain probability), but not
extremely so: there is a non-negligible probability of tunnelling.

A neat approach relates quantum tunnelling to the uncertainty prin-
ciple for energy: the condition for tunnelling could be rewritten in the
form 2(U −E) · L√

2(U−E)/m
∼ ~ and could be interpreted as follows: the

particle “borrows”, for a short time τ = L/v [where v =
√

2(U − E)/m]
the energy 2(U −E), out of which U −E is spent to overcome the barrier
and a further U − E is left as kinetic energy to pass the barrier; the en-
ergy could not be borrowed for any longer than the uncertainty principle
allows.

Measurement in quantum mechanics

The classical or so-called Copenhagen interpretation of
quantum mechanics states that as a result of a quantum-
mechanical measurement, the wavefunction collapses. Sup-
pose an experiment to measure the particle’s momentum is
performed. Before the measurement, the wavefunction of
the particle was a superposition of states of well-defined mo-
mentum, ψ =

∫
ψpe

ipx/~dp. Upon the measurement, a certain
result pm is obtained: thus, from the state

∫
ψpe

ipx/~dp a state
ψpm

eipmx/~ has been obtained. A repeated measurement of the
particle’s momentum from now on will always find the same
value pm of the particle’s momentum, unless the particle is af-
fected by something else. This change of state from a superpos-
ition of eigenfunctions of the measured quantity — which also
included the eventual result among many other contributions

— into the state corresponding to the eigenfunction of only the
measured result is exactly what is known as the collapse of the
wavefunction. Recall that an eigenfunction of a physical quant-
ity is defined as a wavefunction that the particle must have in
order to have this physical quantity well-defined. The probab-
ility that any of these possible results is found is proportional
to the modulus-squared of the corresponding amplitude in the
initial superposition. An important lesson to be learnt is that
every measurement changes the state of the system.

This interpretation works perfectly well in practice, yet can be un-
satisfying from the philosophical point of view. The issue is that the in-
teraction of a particle with a macroscopic measurement device is treated
differently from inter-particle interactions. In this last case, no collapse
happens. For concreteness, let us look at the interaction of two particles,
e.g. electrons. If one particle is described by the wavefunction that is (in
the case of spatial representation) a function of three spatial co-ordinates
and time, ψ(r⃗, t), then the two-particle wavefunction is already a func-
tion of six co-ordinates: Ψ = Ψ(r⃗1, r⃗2, t), where r⃗1 and r⃗2 are the two
particle’s respective position vectors. If the particles do not interact, this
seven-variable function becomes a product of two four-variable functions,
Ψ(r⃗1, r⃗2, t) = ψ1(r⃗1, t)ψ2(r⃗2, t) (much in the same way as the combined
probability of two independent events is the product of two individual
probabilities); in case of interactions such separation of variables is no
longer possible: one has to solve the seven-dimensional Schroedinger equa-
tion. Interactions of more than two particles are treated analogously, and
for n particles one deals with a wavefunction that depends on 3n+ 1 vari-
ables. And there is not even a mention of the collapse of the wavefunction!
So how does this collapse come into play? Classical interpretation leaves
this question unanswered. The tumultuous interplay between the macro-
scopic and microscopic worlds gives birth to various paradoxes, such as
the Schroedinger’s cat and the teleportation (Einstein-Podolsky-Rosen)
paradox.

An alternative interpretation of quantum mechanics, the so-called
many-worlds interpretation due to Hugh Everett and others, is capable
of justifying both the collapse of the wavefunction and the mentioned
paradoxes. The practical implications of this interpretation are mostly
the same as in the classical interpretation. An additional advantage, how-
ever, is that the modulus-squared of the wavefunction is identified with
the probability not by the means of a postulate, but via a mathemat-
ical proof. In this interpretation, the physical reality is postulated to
correspond to the Universe’s wavefunction Ψ, which is a function of co-
ordinates of all the particles in the Universe (including those comprising
the living beings); it evolves all the time according to the Schroedinger
equation and experiences no collapses whatsoever. Thus, Ψ includes all
the possible measurement results for any conceivable measurement. For
simplicity, let us consider the wavefunction of the combined system “ob-
server (experimenter)+particle” and let us suppose that there are only two
possible outcomes to this measurement, ‘1’ and ‘2’. Before and after the
measurement, the observer and the particle do not interact, and so one
can separate the variables and represent the system’s initial state as the
product |M0⟩ |O0⟩, where |M0⟩ is the initial state of the observer, while
the initial state of the particle is the superposition of two possible states,
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|O0⟩ = α |O1⟩ + β |O2⟩; here |O1⟩ and |O2⟩ are the particles’ states in
which the measured quantity is well-defined. After the measurement, the
state of system assumes the form α |M1⟩ |O1⟩ + β |M2⟩ |O2⟩, where |Mj⟩
is the state of the observer according to whom the result of the measure-
ment is ‘j’. But to ensure that a concrete observer have one and only one
opinion of the result of the measurement, we say that the worlds have
split, or that the Universe has branched into two: in one branch, there is
an observer with the state |M1⟩, in the other — with the state |M2⟩. In
which Universe each concrete individual (including yourself) will end up is
purely arbitrary; in either Universe it seems that a wavefunction collapse
has occured (so that |M1⟩ sees the particle in the pure state |O1⟩).

The branching of the Universe does not only happen during a meas-
urement, but rather at any time when an energy dissipation (irreversible
process) occurs. Due to irreversibility, the disconnected worlds cannot
reconnect again. One can say that all the quantum mechanical probab-
ilities come to life in different worlds, and us here are only witnesses to
one possible realisation. There may be a world where the dinosaurs never
perished.
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