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WoPhO Selection Round Problem 1
Induction Motor
Attila Szabó, Grade 12
Leőwey Klára High School
Pécs, Hungary

(a), (b) Let the time t = 0 be chosen such that then n is perpendicular to B. Using this notation,
the flux of the coil is Φ = −BAN sin(Ω − ω)t. According to Faraday’s law, the induced voltage is
U = −∂Φ/∂t = BAN(Ω−ω) cos(Ω−ω)t. To simplify the calculations, we change now to the exponential
description of alternating current, that is, U = BAN(Ω − ω) exp(i(Ω − ω)t). The impedance of the coil
is (the angular frequency of the voltage is Ω− ω) Z = R+ i(Ω− ω)L, thus the current is

I = U
Z

= BAN(Ω− ω)√
R2 + (Ω− ω)2L2

exp(i(Ω− ω)t− iδ)→ I = BAN(Ω− ω)
Z

cos((Ω− ω)t− δ),

where Z =
√
R2 + (Ω− ω)2L2 is the magitude and δ = arctan (Ω−ω)L

R is the argument of Z (in the end
we have reverted back to the trigonometric form). The magnetic moment of the coil is m = IANn, thus
the torque exerted on it is

τ = (m×B)z = mB cos(Ω− ω)t = NAB · BAN(Ω− ω)
Z

cos((Ω− ω)t− δ) cos(Ω− ω)t =

= B2A2N2(Ω− ω)
Z

(
cos2 α cos δ − sinα cosα sin δ

)
,

where α(t) = (Ω− ω)t. We should note that

lim
t→∞

(
1
t

∫ t

0
cos2(x · t∗)dt∗

)
= 1

2 and lim
t→∞

(
1
t

∫ t

0
sin(x · t∗) cos(x · t∗)dt∗

)
= 0

are the time averages of the above functions, thus the requested time average is

T = B2A2N2(Ω− ω)
Z

cos δ
2 = B2A2N2(Ω− ω)

Z

R

2Z = B2A2N2(Ω− ω)R
2(R2 + (Ω− ω)2L2) = B2A2N2RΩs

2(R2 + Ω2L2s2) ;

in the last form we have introduced the expression of the slip. For the case of the small slip, we may
obtain a simpler formula by calculating with s to the first order:

T(a) = B2A2N2RΩs
2R2 = B2A2N2Ωs

2R .

(c) By introducing β = LΩ/R, we may simplify the expression for T :

T = B2A2N2RΩs
2(R2 +R2β2s2) = B2A2N2Ω

2R
s

1 + β2s2 .

Taking the numerical prefactor describing the motor equal to 1, we have to sketch the function s/(1+β2s2)
for β = 10. The plot for the reasonable interval is in Fig. 1.
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Figure 1. T (in the units of B2A2N2Ω/2R) as a function of s and some load characteristics.
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(d) The maximum of T occurs where its derivative with respect to s (or equivalently, that of s/(1 +

β2s2)) is 0. This derivative is 1−β2s2

(1+β2s2)2 , the root of which is

s0 = 1
β

= R

LΩ .

In this case, the average torque is

Tmax = B2A2N2Ω
2R

1/β
2 = B2A2N2Ω

4R
R

LΩ = B2A2N2

4L .

Note. If β < 1, i.e. the ohmic resistance is too large, s0 would be greater than 1, which is nonsense. In this case,
the T (s) function is growing monotonously all over the reasonable 0 ≤ s ≤ 1 range, thus the maximal torque
belongs to s0 = 1 and it is Tmax = B2A2N2Ω

2R(1+L2Ω2/R2) .

(e) The energy loss in the system is the Joule heat dissipating in the coil. In average this is given by

Ploss = I2
effR = 1

2I
2
peakR = R

2

(
BAN(Ω− ω)

Z

)2
.

The useful power is the mechanical power of the motor, which is given for rotations by Pmech = τω, or
in average,

Pmech = Tω = B2A2N2(Ω− ω)ωR
2Z2 .

The efficiency of the motor is thus

η = Pmech

Pmech + Ploss
= ω

Ω = 1− s.

(f) Let s0 be the root of the equation T (s) = Kω = KΩ(1 − s): at this slip, the motor is working
without accelerating or decelerating the load. Imagine that the slip gets perturbated, so it value becomes
s0 + δs. The system is stable when the total torque acting on it acts in order to reduce δs, that is, if
δs > 0, thus δω < 0, the torque accelerates the system, thus ΣT > 0. This total torque is given by

ΣT = T (s0 + δs)−KΩ(1− s0 − δs) =
(
∂T

∂s

∣∣∣∣
s=s0

+KΩ
)
δs → ΣT

δs
= ∂T

∂s

∣∣∣∣
s=s0

+KΩ,

which must be greater than 0 to have the system stable. On the monotonously growing section of T (s),
the expression is clearly greater than 0, thus this section is stable, but the first stable section exceeds
slightly this part of the graph: the critical state is the one where ΣT/δs is exactly 0. The related equations
are

B2A2N2Ω
2R

s0

1 + β2s2
0

= KΩ(1− s0); B2A2N2Ω
2R

1− β2s2
0

(1 + β2s2
0)2 +KΩ = 0.

Combining the equations give the irreducible cubic equation s0(1 + β2s2
0) = (1 − s0)(β2s2

0 − 1). The
positive numerical solutions for β = 10 are s1 = 0.1138 and s2 = 0.4781. We have already found that
for s < s1 the system is stable, consequently, for s1 < s < s2 the system is unstable and for s2 < s it is
again stable, as at the roots of the above equation the continuous function ΣT/δs changes sign.

Lines for some interesting K are plotted in Fig. 1. as well. Let K2 < K1 be the two values of K which
constitute s0 = s1 and s0 = s2, respectively (green and red lines). We can find that for K < K2 there is
a single stable operating point with s < s1 and for K > K1 there is a single stable operating point with
s > s2. When K2 < K < K1, we can find three operating points: for one of them, s < s1, for one s > s2
and for one s1 < s < s2: the first two are thus stable, the last is unstable. If the system gets perturbated
at the latter, the slip will begin to oscillate about and converge to one of the stable operating points.

(g) In the case of a negative slip, the motor is braking, but the efficiency rises over 1: this means,
that rotating the rotor over an angular velocity of Ω takes mechanical energy, but it is gained back as
electrical power. In practice, this is the principle of induction (or asynchronous) generators.


