
Motion in the electrostatic field of a Dipole

The characterization of point object motion, when both radial and tangential forces are applied,
is usually rather complicated, and requires advanced mathematical tools. However, some systems
such as a motion of a point charge near an electric dipole, which have a very specific electrostatic
field, provide interesting results, even for the case when an angular momentum is not conserved.

Assume that the relativistic and the electromagnetic radiation effects can be neglected, unless
otherwise stated.

1 Movement of the dipole

Start with a case, where a point small charged object with a charge +Q is fastened to the table.
The center of the dipole is fixed at the distance L from the charged object (see Figure 1). The
dipole consists of two identical small balls fastened to the tiny, rigid rod with a length d, d � L,
so that the moment of inertia can be ignored. Each of the balls has a mass m and have charge +q
and −q. The dipole can rotate around its center in a plane parallel to the surface of the smooth
table.
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Figure 1. Schematic representation of the system used in section 1.1 

 
1.1 Calculate the period of the small oscillations  of the dipole around its axis in the electrostatic field of 

the charged object. 
0.4 pt 

 
Now, the dipole freely moves around the charged object, which is still fastened to the table. The dipole is launched with 
an initial velocity , as shown in Figure 2. The parameters of the system are chosen in such a way that the period of 
oscillation of the dipole in the electrostatic field of the fixed object is large enough to assume that the dipole is always 
oriented along the line between the dipole and the charged object.  

 
Figure 2. Top view of the case, when the dipole is moving around the fastened charged body. (Not to scale) 

1.2 Determine the magnitude of tangential  and normal  components of the velocity of the dipole in 
terms of , ,, , ,  and .  

(  is the distance from the center of the dipole to the charged object). 

0.9 pt 

 
In order for the dipole to get closer to the charged object, its initial velocity should be less than some critical value 
   . 
1.3 Find this critical initial velocity . 0.2 pt 
 
1.4 Sketch the trajectory of the center mass of the dipole for the case when the dipole is launched with the 

critical initial velocity  , considering a very long time (radiation effects take place).  
0.2 pt 

 
Suppose that the condition     is applied and radiation effects are very small. 
1.5 What time  is required to reduce the distance between the dipole and the charged body to half of the 

original distance? 
1.5 pt 
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Figure 1: Schematic representation of the system used in section 1.1

1. Calculate the period of the small oscillations T of the dipole around its stable equilibrium axis
in the electrostatic field of the charged object.

Now, the dipole freely moves around the charged object, which is still fastened to the table.
The dipole is launched with an initial velocity u, as shown in Figure 2. The parameters of the
system are chosen in such a way that the period of oscillation of the dipole in the electrostatic
field of the fixed object is large enough to assume that the dipole is always oriented along the
line between the dipole and the charged object.

2. Determine the magnitude of tangential vt1 and normal vn1 components of the velocity of the
dipole in terms of Q, q, m, d, u, L and r . (r is the distance from the center of the dipole to
the charged object).

In order for the dipole to get closer to the charged object, its initial velocity should be less than
some critical value u < vcr.

3. Find this critical initial velocity vcr.

4. Sketch the trajectory of the center mass of the dipole for the case when the dipole is launched
with the critical initial velocity vcr, considering a very long time (radiation effects take place).
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Figure 2: Top view of the case, when the dipole is moving around the fastened charged body. (Not
to scale)

Suppose that the condition u < vcr is applied and radiation effects are very small.

5. What time t1 is required to reduce the distance between the dipole and the charged body to
half of the original distance?

2 Motion around the fixed dipole

In this part, analyze a situation when an angular momentum is not conserved. The system is the
same as in the previous part with the only difference that the dipole is fixed and the charged small
object with a mass 2m is moving around the dipole. The electrostatic field of the dipole is easier
to describe in the polar system of coordinates, which is defined with the distance r from the center
of the dipole, and angle θ counted counterclockwise, as shown in Figure 3.
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Figure 3. The system analyzed in Part 2. (Directions of the vectors  and  could be wrong) 

2.1 Determine the electrostatic potential  at a distance  ≫  from the dipole, as a function of . 0.2 pt 
 
2.2 Find the components of the electric field  and  in terms of , ,  and . 0.4 pt 
 
2.3 What torque is applied to the moving object counting from the center of the dipole when the object is at 

the distance  and angle  from the dipole? 
0.2 pt 

 
2.4 Determine tangential component of the velocity  of the charged object as a function of coordinates  

and .      Hint: 

  – angular velocity 

2.0 pt 

 
2.5 Calculate the normal component of the velocity  of the moving object. 0.8 pt 
 
Now it is time to compare results with the first part. 
2.6 Find the time  it takes to reduce the distance between the dipole and the charged body to /. 1.0 pt 

 
3. Circular motion 

In this part the peculiarity of the circular motion around the dipole is analyzed. Initially, the system is the same as in Part 
2, with the exception that the charged object is connected to the center of the dipole with a light, rigid insulating rod 
with the length . This rod easily rotates around the axis, which is perpendicular to the surface of the table. Thus, the 
charged object moves around the dipole along circular trajectory with radius .  
3.1 What is the maximum and minimum velocity of the charged object  and  during circular 

motion around the dipole? 
0.9 pt 

 
3.2 Derive an expression for the force  acting from the moving object on the rod in terms of ,,, ,  

and . 
0.8 pt 

 
3.3 With what initial velocity  should the charged object be launched, so that it will move around the 

dipole along a circular trajectory, even without the rigid rod? 
0.2 pt 

 
3.4 Sketch the orbit of the charged object for the situation described in 3.3 for a long time (radiation effects 

make their impact on the motion). 
0.3 pt 

 
*** 

Useful formula:    


 √    ,							where A and C are some constants 

Problem creator: Pavel Levchenko 

Figure 3: The system analyzed in Part 2. (Direction of the vector En and Et could be wrong)

1. Determine the electrostatic potential ϕ at a distance r � d from the dipole, as a function of θ.

2. Find the components of the electric field En and Eτ in terms of r, θ, q and d.
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3. What torque is applied to the moving object counting from the center of the dipole when the
object is at the distance r and angle θ from the dipole?

4. Determine tangential component of the velocity vτ2 of the charged object as a function of
coordinates r and θ. Hint: dθ

dt = ω angular velocity

5. Calculate the normal component of the velocity vn2 of the moving object.

Now it is time to compare results with the first part.

6. Find the time t2 to reduce the distance between the dipole and the charged body to L/2.

3 Circular motion

In this part the peculiarity of the circular motion around the dipole is analyzed. Initially, the
system is the same as in Part 2, with the exception that the charged object is connected to the
center of the dipole with a light, rigid insulating rod with the length L. This rod easily rotates
around the axis, which is perpendicular to the surface of the table. Thus, the charged object moves
around the dipole along circular trajectory with radius L.

1. What is the maximum and minimum velocity of the charged object vmax and vmin during
circular motion around the dipole?

2. Derive an expression for the force N acting from the moving object on the rod in terms of m,
L, Q, q, d and u.

3. With what initial velocity uc should the charged object be launched, so that it will move around
the dipole along a circular trajectory, even without the rigid rod?

4. Sketch the orbit of the charged object for the situation described in 3 after a long time (radiation
effects make their impact on the motion).

Useful math :
∫

xdx√
A−x2 = −

√
A− x2 + C, where A and C are some constants
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