Problem 10: magnetic levitation

A rectangular superconducting plate of mass m has four identical circular holes, one near each corner, see figure. Each hole carries a certain magnetic flux (all the four fluxes are equal and of the same polarity). The plate is put on a horizontal surface which is also in a superconducting state. The magnetic push between the plate and the surface compensates the weight of the plate when the width of the air gap beneath the plate is d, which is much smaller than the distance between the plate’s and holes’ edges (denoted by Δ in figure); d is also much smaller than the radii of the holes.

When the plate levitates in such a way above the support, the frequency of its small vertical oscillations is ν_0. Next, a load of mass M is put on the plate, so that the load lays on the plate, and the plate levitates above the support. What is the new frequency ν of small vertical oscillations (when the load and plate together oscillate up and down)?