
A homogeneous ring lays horizontally on two 
identical parallel rails. The first rail moves parallel 
to itself, with a constant speed v; the second rail is 
at rest. The angular distance between the ring-rail 
contact points, as seen from the centre of the ring, 
is 2α for the first rail, and 2β for the second rail, 
see figure. Assuming that α << 1 and β = π/3, find 
the speed of the centre of the ring.
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Hints after 1st week: This problem can be solved by using a brute force approach, i.e. writing down two equations for two 
unknown angles. However, the solution can be significantly simplified once a useful geometrical fact is noticed: then, it is 
enough to write down only one equation for one unknown quantity.
Hints after 2nd week: Typically in the case of static's problems, it is convenient to start with a torque balance, because the 
origin for the balance equation can be chosen in such a way that arms of at least two forces become equal to zero; also, you 
are free to choose, which forces you want to disappear from your torque balance (which are the least desirable). In 
particular, if there are only three forces applied to a rigid body at an equilibrium, the lines along which these forces are 
applied intersect always in a single point. Here, in order to derive the “geometrical fact” mentioned in the previous hint, 
study the torque balance with respect to the intersection point of the lines along which two forces (e.g. the friction forces 
due to the 1st rail) are applied. 
Hints after 3rd week: Here is  the “to-do-list” for the Problem 7. Let the x-axis be along the rails, 
y-axis — the other horizontal axis, and z — the vertical one.  Do not put α = 0; instead neglect terms which are much 
smaller than α2 (e.g. using cos α ≈ 1 – α2/2). Find the magnitudes of the friction forces using  the torque balance in y-z-
plane. Study the torque balance of two friction forces in x-y-plane (e.g. those due to the 1st rail ) with respect to the 
intersection point P of the lines defined by the remaining two friction forces. As a result, you should be able to notice that 
the position of the point P defines the directions of all the four friction forces. Write the x-directional force balance equation 
of the friction forces using the distance L of the point P from the 1st rail as a single unknown quantity; solve the equation 
using the approximation α << 1 (be careful: L has the same order of smallness as α2!). Once you know L, the ring’s speed 
can be easily found by finding first the distances between the instantaneous rotations centres of the ring in the reference 
frames of the 1st and of the 2nd rail, and the centre of the ring. Finally note that numerically approximate answer can be 
found using purely geometrical constructions, e.g.  with the help of GeoGebra applet (still, analytical exact result is much 
more preferred).

Results of the 7th problem.    Correct solutions have been submitted by 
(ordered according to the arrival time):

1 Szabo Attila (Hungary)          3.619859205 (submitted during the 1st week)
2 Oliver Edtmair (Austria)             3.674123988 (submitted during the 2nd week)
3 Dan-Cristian Andronic (Romania)           1.697722338 (submitted during the 4th week)
4 Cyuan-Han Chang (Taiwan)          1.543383943
5 Kurenkov Mikhail (Russia)          1.9487171
6 Lars Dehlwes (Germany)          1.61051
7 Nguyen Ho Nam (Vietnam)   0.8433216
8 Madhivanan Elango (United Kingdom)  1.4641
9 Jordan Jordanov (Bulgaria)          1.21
10 Vũ Việt Linh (Vietnam)          0.88
11 Efim Mazhnik (Russia)          1
12 Qu Xinyi (Singapore)          0.64
13 Daumantas Kavolis (Lithunia)          1
14 Jakub Mrożek (Poland)          1
15 Jakub Safin (Slovakia)          0.9
16 Jaemo Lim (Korea)                      0.576
17 Ismael Salvador Mendoza Serrano (Mexico) 0.9
18 Samuel Bosch (Croatia)             0.9
19 David Stein (Germany)             0.9
 
 



This time, the best-solution-awards go to the two first solutions - not because these were really 
the best, but because all the other solutions arrived after very detailed hints, at which point 
solving became much easier than before. Meanwhile, the first hint was so subtle that for the 
second week, the decrease of difficulty was negligible. The solution of Szabo Attila  is a brute-
force one, and the solution of Oliver Edtmair is based on geometric observations; hence the 
award is divided in proportions 1:2 in favour of Oliver.
We start with the introductory paragraphs of the solution of Madhivanan Elango, which 
provides the simplest proof that all the four forces point towards the same point.
 
I first show the diagram above and introduce the new quantities as labelled. Notice that the velocity 
vectors shown are from the frame of reference of the rail, on which the points are situated on and that 
the decomposition of vectors v1 and v2 are also shown on the diagram. Additionally, label the radius of 
the ring as R. Label the x axis parallel and in the direction of the velocity of the moving rail, the z axes 
comes straight out of the page and then label the y axis to follow a right hand coordinate system. Since 
the ring is in equilibrium all forces and all torques about any point must sum to 0. The frictional forces 
by definition are in opposite directions to the velocity vectors and are proportional to the normal 
reaction force at that point. Let the normal reactions on the moving rail be N1 and the reactions on the 
stationary rails be N2. By considering torques in the y-z plane about the center of the ring, it is clear to 
see that N1Rcosα = N2Rsinα, that is N1cosα = N2cosβ. This means that F1cosα = F2cosβ. Now 
consider the torques about point P, the intersection of F1 and F2: we know that they must sum to 0. 
Notice that the two forces from the first rail are just reflections of each other in the line defined by the 
rail. Due this symmetry, the two torques about P will clearly have the same sign, so the only way that 
these two torques can have a total sum of 0 is if each is 0: they must therefore both go through the 
point P so all four lines defined by the forces are concurrent at P.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
At this point, it should be empahsized that  in a generic case, if there are four forces applied to a rigid 
body at equilibrium, these forces do not necessarily need to be pointed towards a single point (unlike 
what is valid for three forces). 
There are two more steps left to do: finding the distance x in the figure above, and based on 
that result, finding the speed of the ring. Before we continue with the solutions of contestants, 
let us have a look, how these steps can be done in the simplest way.
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Due to F1cosα = F2cosβ, with appropriately chosen units of force we can put F1=1, F2=2cosα (here we 
substituted cosβ = ½), and R=1. Note that |ST|≡ y = 0.5α2, and γ = δ + π/6, where δ ≈ sin(π/6)(x+y)/|BT|= 
0.5tan(π/6)(x + 0.5α2). Now we can express the vertical components of the forces as follows: 
  F1x = |AS|/|AP|≈ α/√α2+x2 = (1+x2 /α2)-1/2 ≈ 1 - x2 /2α2 
     and F2x = (2 - α2)sinγ  ≈ (2 - α2)[0.5 + cos(π/6) δ] ≈ (2 - α2)[0.5 + 0.25(x + 0.5α2)] ≈ 1 - 0.25α2 + 0.5x.
If we denote z = x/α2 , the condition F1x = F2x can be written as 
2z2 + 2z - 1 = 0, hence (excluding the negative solution) z =  0.5(√3 - 1). From here  x =  0.5(√3 - 1)α2.
Now we can turn to the final step, finding the speed. To that end, we introduce the instantaneous 
rotation centres C1 and C2 (in the 1st rail’s and laboratory reference frames, respectively); see also the 
solution of Cristian Andronic below (he was the only one to use the instantaneous rotation centres). 
From the similar right triangles C1AP and ASP we obtain |C1P|≈ |C1S|= |AS|2/x = 1/z = √3 + 1. It is easy 
to see that C2 is very close to the edge of the ring, so |C2O|≈ 1. In the 1st rail’s frame, the speed of the 
ring’s centre is v1= -ω|C1O| (down), and in the laboratory frame — u=ω|C2O| (up); here, ω is the ring’s 
rotation speed. The difference of the two velocities gives the 1st frame speed, v = ω(|C1O|+|C2O|), and 
hence, the lab-frame-speed of the ring’s centre u = v|C2O|/(|C1O|+|C2O|) ≈ v/(3+√3 ).
Below, after the solution of (a) Cristian Andronic, the following solutions can be found.  (b) Cyuan-Han 
Chang, who uses another way to show that all the friction forces are directed towards the same point; 
also, he obtains a correction term to the answer which describes slow dependance on α (this was also 
done in few other solutions); (c) Kurenkov Mikhail: the only one who cares to show that assuming 
equality of the dynamic and static coefficients of friction, the ring cannot stay at rest — if it were at rest, 
the friction forces due to the 2nd ring could be smaller; the “best” solutions of (d) Szabo Attila  and 
(e) Oliver Edtmair.
 


