
Problem 8: gas bubble in water (contributed by Mihkel Kree)

Introduction. People living in colder climates have surely noticed that by �lling a glass with cold tap
water one gets a glass of misty (or rather milky) water. The reason is that depressurizing and warming
of the water causes the initially dissolved gas to come out of the solution and form tiny bubbles. In this
problem you are going to calculate the size of such gas bubble in water.
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A photographer prepared a setup
consisting of a rectangular water tank
with glass walls, a laser beam entering
the water tank perpendicularly to one of
its faces, and a camera looking directly
towards a neighbouring face of the wa-
ter tank. A gas bubbled entered the la-
ser beam and the photographer managed
to take �ve photos of the bubble whi-
le continuously defocusing the camera.
The lens had �internal focusing� design,
so that defocusing meant changing the
focal length while keeping the position
of the lens intact, see �gure. The line of
sight from the camera to the bubble was
perpendicular to the laser beam, and the
bubble was entirely inside the beam.

In the �gure below, the taken photos are placed side by side and indicated by numbers 1− 5.
Task: calculate the diameter of the gas bubble.
Parameters: index of refraction of water with respect to gas: n = 1.3; wavelength of the laser: λ = 488 nm;
the lens of the camera can be considered as a single convex lens with focal length f = 10 cm and diameter
D = 3.6 cm (the change of the focal length due to defocusing was less than 10%); the distance from the
bubble to the lens: L = 30 cm (more precisely, this is the distance from the lens to the image of the bubble
as seen from the centre of the lens, see �gure above).

Hints after the �rst week. If you have a glass ball, observe, what you can see when it is illuminated
by a point source (a lamp) from a side. Alternatively, you can study the photo at
http://en.wikipedia.org/wiki/File:Clayton_Anderson_zero_g.jpg: (from where the light comes from?).
Hints after the second week. We can observe here a nice system of regularly periodic di�raction
stripes. Such a di�raction pattern can be observed for two-slit di�raction, but there are clearly no slits in
the case of this experimental setup. However, a similar pattern can be observed if there is an interference
of light rays coming from two coherent point sources, assuming that the size of the screen on which we
observe the interference pattern is much smaller than its distance to the point sources. (Indeed, if there

http://en.wikipedia.org/wiki/File:Clayton_Anderson_zero_g.jpg


is a cylindrical screen, and the two point sources are at the axis of the cylinder, the di�raction pattern on
the screen will be exactly the same as on a �at screen behind two-slits; if we straighten a small piece of a
cylindrical screen the change of its shape is small, and hence, the change of the di�raction pattern on it is
also small.) So, we can make an hypothesis that the di�raction pattern is due to two point sources which
are created by the light scattering e�ects of the bubble. Since the di�raction pattern is very clean (minima
are very dark), one can conclude that almost all laser light reaching the lens comes exclusively from those
two point sources, and that they have nearly equal brightness.
Hints after the third week. There are three apparent candidates for the point sources responsible
for the interference pattern. These are images of the laser created (a) via a re�ection from the convex
bubble surface (which works as a convex mirror, except that the surface is only partially re�ecting); (b)
via a re�ection from the concave bubble surface (in which case the laser light refracts into the bubble, is
re�ected by the concave surface, and refracts back to the water); (c) via two sequential refractions from
the air-water interface of the bubble. Closer inspection shows that via two sequential refractions, the light
cannot be diverted as much as by 90 degrees (this would require a larger value of the refraction index).
Please pay attention that the bubble cannot be considered as an ideal lens: you can �nd (and make use
of) an image for a narrow beam of light hitting the bubble with an impact parameter a, but the position
of the image (and the e�ective focal length) is a function of a. Finally, please note that for this problem
it may happen that you obtain an equation which needs to be solved numerically.
Correct results have been submitted by:
1. Oliver Edtmair (Austria), 3.168 pts
2. Kuo Pei-Cheng (Taiwan), 2.880 pts
3. David Stein (Germany), 2.356 pts
4. Dan-Cristian Andronic (Romania), 1.403 pts
5. Szabó Attila (Hungary), 1.731 pts
6. Jakub Sa�n (Slovakia), 1.967 pts
7. Lars Dehlwes (Germany, 1.464 pts
8. Andres Põldaru (Estonia), 1.331 pts
9. V�u Viêt Linh (Vietnam), 0.871 pts
10. Ly Nguyen (Vietnam), 0.713 pts
11. Cyuan-Han Chang (Taiwan), 0.72 pts
12. Madhivanan Elango (United Kingdom), 0.792 pts
13. Kurenkov Mikhail (Russia), 0.9 pts
14. Ismael Salvador Mendoza Serrano (Mexico), 0.513 pts.
(Bold font marks the recipients of the best solution award, e−1/5 each.)

Solutions
The solutions can be divided into two classes: (a) based on the calculations of optical path lengths, and
(b) based on the calculation of the distance between two images (e�ective point sources) created by the
re�ections from the bubble' surface.

There were three solutions submitted before any hints, and all these were quite well written. Oliver
Edtmair submitted his (a)-type solution already by Monday night.

Kuo Pei-Cheng's (a)-solution (submitted Wednesday) could have bene�ted from few more explanations,
but his drawings and calculations were very clear and self-explanatory. David Stein's (b)-type solution
(submitted Sunday night) was the �rst one to show that it is impossible for a ray to reach the camera
purely by refractions, without re�ections from the bubble's surface (on behalf of those who didn't: if there
were three rays reaching the camera, the di�raction pattern would have been non-periodic). However, he
did mistake in counting the number of stripes (as a rule, any mistake will result in a non-acceptance of
the solution, but such really minor mistakes are exceptions; though, they incur a penalty factor of 0.9).

Apart from these �rst-week-solutions, the best-solution-awards went to Attila Szabó, who was the �rst
one to make an error analysis, and to Jakub Sa�n, who documented clearly all the approximations and
assumptions which were made during the calculations.

Below, all these solutions are attached in the submission order. This covers all the main solving tech-
niques, so that there is no need for providing additional solutions.

Final words
The Problems 7, and 8 were really di�cult, and the Problem 9 is di�cult, too. I promise, Problem 10 will
be a simpler one. So, stay online on 7th July, otherwise you may miss the opportunity of getting a speed
bonus! � JK



Problem 8 
 

 
 
Light rays within a small angle   to the line perpendicular to the water surface pass 
through the lens. 
 

    

    
 
 

 
 

 

     
 

  
 

 
            

 
The light rays are refracted and reflected by the water-gas surface. There are two 
possible ways for the light rays in order to leave the bubble within the angle  . 
 



 
 
One ray is reflected at point A, the other one enters the bubble at point B, is reflected at 
point C and leaves the bubble at point C. For each   an angle   can be found so that the 
two rays leaving the bubble are parallel. These parallel rays meet in the picture and 
cause the interference pattern. The criteria for constructive interference is 
 

      
 

 
     

 
    

 
Equations for x, y,  ,   and   (R … radius of the bubble) 
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The equations of constructive interference of two different bright lines on the picture 
can be subtracted. 
 

   

 
        

 
(   … number of dark lines between the two bright lines) 
 
As   is small, the changes in the angles  ,   and   are small either. Therefore 
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(  ,    and    are the angles of the two rays leaving the bubble perpendicular to the 
water surface. These rays cause the bright line in the middle of the picture. The 
reference line is the outmost line. Thus     ) 
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Equation for    
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The radius of the bubble is 
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The diameter of the bubble is 
 

                  





Problem 8-Solution
We want to identify each ray by its  number of interactions I  with the gas bubble.  Therefore a 
number of interactions I means 2 transmissions/refractions and I-2 reflections. In order to minimize 
loss of intensity we have to investigate rays with minimal number of interactions. We are looking 
for 2 rays, that can interfere with each other. Therefore one ray has to be the directly reflected with 
incident angle of 45°. Let α be incident angle and β be refraction angle. Each incident angle 
inside is β .  That  can be concluded by simple geometric analysis.  By each reflection the ray 
rotates  about  2β−π ,  by each refraction/transmission the ray rotates  about  β−α .  Let  the 
aperture be at an angle π/ 2 from line bubble-laser.

We have to minimize I, therefore we begin with I=2 (I=1 would mean one reflection):

I=2
Transmitted ray rotates about 2(β−α) and that has to be π

2
(1) β=α+π

4

(2) n sinα=sinβ

n sinα=sin (α+π
4
)=sinα⋅cos π

4
+cos α sin π

4
=

1

√2
(sinα+cosα)

⇒ tan α=
1

√2⋅n−1
=1.193⇒α=arctan 1.193≈50 °⇒β=95°

But this is impossible, because β>90 ° means the ray would be total reflected. Therefore I=2 is 
not of interest. 

I=3
(1) 4β−2α=π

2
⇒α=2β−π

4
 from simple geometric consideration

(2) n⋅sin(2β−π
4
)=sinβ⇒ f (β)=n⋅sin (2β−π

4
)−sinβ

We solve this equation by using Newton's method:

βn+1=βn−
f (βn)

f ' (βn)

βn+1=βn−

n sin(2βn−
π
4
)−sinβn

2ncos (2βn−
π
4
)−cos(βn)

, β0=40°

We get the approximated angle β=35.9 ° . It follows from this: α=26.8 ° . These angles seem 
to be the right ones because they satisfy the conditions stated above.





We need the distance of the first and the second ray. From geometry we can conclude, that:

d r=∣AE∣+∣FD∣=R(cos π
4
+cosα)=

d
2

(cos π
4
+sinα)

d=2dr⋅
1

cos π
4
+sinα

 (3)

The interference pattern is established by two monochromatic point sources with distance d r . 
The interference pattern is very similar to the one produced by a lattice with lattice parameter d r .

Δ s=m⋅λ=d r⋅sin γ , 

where γ is the angle under which a maximum is seen. Let δ be the aperture angle, under which 
light can be travel trough the lense. Obviously it is: 

tan δ≈δ=
D
L

; δ≪1 because of L≫D

If N is the total number of interference bands we can say, that unter the angle δ
2

we can see the 

N
2

-th maximum. Therefore

N
2
⋅λ=d r sin δ

2
≈d r⋅

δ
2
⇒ N λ=d rδ=

d r⋅D

L

d r=
L⋅N λ

D
(4)

Setting (4) into (3) we get:

d=
2⋅L⋅N⋅λ

D
⋅

1
cos π

4
+sinα

Now we want to set in the numerical values: N=9 , α=26.8 ° and the given information from 
the text. Then we find:

d=
2⋅30cm⋅9⋅488nm

3.6cm
⋅

1
1

√2
+sin 26.8°

≈63.21μm
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WoPhO Selection Round Problem 8
Physics Cup – Bubble in water
Attila Szabó, Grade 12
Leőwey Klára High School
Pécs, Hungary

There are two phenomena happening to laser light which result in rays going perpendiularly to the
incoming ones: reflection on the primary surface of the bubble; refraction into the bubble, reflection on its
inner surface and refracting out of it. The two will have nearly equal intensities, hence the pattern will be
sharp as in the photos.

In the first case, a perpendicular reflection will happen if the angle of incidence is α = 45◦. In this case,
the reflected ray will intersect the optical axis in a distance of AI = R cosα = R/

√
2 from the centre of the

bubble. Since the image will be formed by rays coming not in this plane but a slightly rotated one about
the optical axis, this point should be considered as one of the point sources: since we’re interested in rays
coming in a small angle to this one, this apparent ‘point source’ is a good approximation in this plane (see
Figure 1).

Now we’re going to calculate the focal point of the bubble for the latter optical path. When refracted
into the bubble, the angle of refraction will be β = arcsin(n sinα) by Snell’s law. As OCD is an isosceles
triangle, the angle of incidence and thus the angle of reflection at D is β as well, so is the angle of incidence
at E due to the isosceles triangle ODE: at point E, the angle of refraction is α due to symmetry. Consider
the quadrilateral CDEM where M is the intersection point of the lines of the incoming and finally outgoing
rays. By geometry, the angle at vertices C and E is β − α, that at D is 2β, consequently, the angle at M
which is apparently the angle of diversion is 360◦ − 4β +2α; this angle must be either 90 or 270 degrees the
two rays to be perpendicular. There is no solution for the first case in the trivial domain 0 ≤ α ≤ 90◦; the
second case gives rise to the solution α = 26.82◦ (calculated numerically); by checking the geometry we’ll see
that the ray should come from below the optical axis to leave upwards. Let the outgoing ray intersect the
optical axis in K: since we’re interested in rays going upwards this point can be considered as an effective
focal point. It’s easy to see that AEK∠ = α and AKE∠ = 90◦; from the right triangle AEK one can see
that K is R sinα = 0.4512R away from the centre of the bubble and on the opposite side of A compared to
I (see Figure 2).

Consequently, the laser will apparently be focused into two points when seen from the camera, the
distance of which is d = AK + AI = 1.1583R, this will be the apparent distance seen by the camera as
surface refraction changes only vertical distances. This means that the arising diffraction pattern will look
like the pattern of two slits of distance d, thus the angular distance of neighboring minima are α = λ/d.

To measure α on the photo, we need to know the angular diameter that is imaged in it. This is clearly
β = D/L as the light cone coming from the apparent point sources can get to the lens only in this angle.
The apparent distances are proportional to angular distances in the slightly defocused images. The measured
apparent diameter of the 5th spot (400% magnification in Adobe Reader) is b = (235± 3) mm, the apparent
distance of 7th neighbor minima is 7a = (195±5)mm, thus the distance of neighboring minima is a = (28±1)
mm. The above mentioned proportionality yields that a/b = α/β, by substituting everything:

a

b
=
α

β
=

λ/d

D/L
= 0.8634

λL

RD
→ R = 0.8634

λLb

Da
= (29± 1.5) µm,

thus the diameter of the bubble is δ = 2R = (59± 3) µm.
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Fig. 1. The optical setup at α = 45◦.

Fig. 2. The optical setup at α = −26.82◦.

In both figures, the blue ray is the incoming one, the green ones are the rays propagating inside the bubble,
the red one is the reflected and the brown is the refracted-reflected-refracted back ray.



Jakub Šafin (Xellos)
WoPhO Physics Cup, problem 8

Consider a ray of the laser incident on the bubble. If the angle of incidence
is large enough, total reflection may occur. Otherwise, the ray reflects partly
from the outer bubble surface of the bubble, and it also refracts partly into
the bubble. Then, the refracted part of the ray is once again incident on the
inner bubble surface, and once again, it’s partly reflected into the bubble and
partly refracted out of it (full reflection never happens, because n > 1). The
same process repeats itself with the reflected part of the ray - but since partly
reflected part of the ray has much smaller intensity than the partly refracted
one, we may neglect this effect. Then, a ray splits into 3 noticeable rays:
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Now, let’s utilize the fact that D � L: the photo comes only from parts
of rays, which exit the surface of the bubble (either by first reflection or by
any refraction) perpendicularly to their original rays, e.g. are diverted from the
original path by an angle δ ≈ 90◦ (the relative errors of the result coming from
such an estimate are no more than several %).

First, let’s check the double-refracted rays. We could see already that these
aren’t incident on the lens, because their intensity is very large (most of the
original ray) and the interference pattern would be invisible. But let’s calculate
the angle δ for them.

Consider the center of the bubble on the optical axis o, and a ray ‖ o incident
on it at a distance R sinα above o. More precisely now, we want δ ∈ [0, π] and
we’re not interested in the sign, because a ray incident at distance l below the
axis has the same δ, just with opposite sign, so δ = 180◦ + δ = −δ for out
purposes.
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Utilizing isosceles triangles in a circle, we see that δ = 2(β − α). By Snell’s
law, sinβ = n sinα. Then, the derivative of δ = 2(arcsin (n sin alpha)− α) by α
is

2(
n cosα√

1− n2 sin2 α
− 1) ≥ 2(n cosα− 1)

Now, let’s jump to fully reflected rays? Total reflection happens in case the angle
of incidence α satisfies sinα > 1

n , so α > 50◦ in our case. So for the double-
refracted rays, α < 50◦ and cosα > 0.6, so the derivative is always positive.
This says that δ is maximum when α is maximum, e.g. the approx. 50 degrees,
and then, we get δ = 80◦. So close! Well, those rays don’t affect the picture,
because their δ never even comes close to right angle.

Since we already have some info about fully reflected rays, let’s give a trivial
picture:
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from which we see already that δ = 2α, which for 90◦ > α > 50◦ gives
180◦ > δ > 100◦. Those rays are out of the picture (in both meanings, lol) as
well. And if we’re looking for rays which just reflect partly and have δ ≈ 90◦,
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then we want them to have α ≈ 45◦, so they are centered at focus F1 ∈ o, with
distance |OF1| derivable by extending the reflected ray to reach o; those rays
are perpendicular to the original ones and therefore to o, so 4ASF1 is isosceles
and right, and then |OF1| = R− R√

2
= 0.29R.

This point is the first source of the interference pattern. There are just the
rays which refract, reflect and refract again, left. For those, we draw the image
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and see that δ = |∠AXC| = 4β − 2α > 0 (90◦ > β > α > 0 for n > 1,
from monotonicity of sine). We’ve seen already that for increasing α, 2(β − α)
is increasing as well, and so is β (monotonicity of sine again). There is no nice
analytical solution to the equation 4β − 2α = 90◦, but when we know it’s
increasing, we can produce a Python script to binary-search the right α:

from math import *

def expr(a): # a: alpha in radians; 4b-2a > PI/2?
return 4*asin(1.3*sin(a))-2*a-PI/2

PI =3.142; soclose =10**-5
aa =0; ab =49*PI/180 # minimum alpha, maximum alpha
# watch out for ab > 50*PI/180

while ab-aa > soclose:
ac =(aa+ab)/2
if expr(ac) > 0: ab =ac
else: aa =ac

print(aa)*180/PI # alpha in degrees

which gives α = 27◦. Those rays are centered at focus F2. Then, we may
derive |OF2| as follows: by Snell’s law, β = 36◦; using the fact that the outco-
ming ray (extended to reach F2) is perpendicular to o and |∠OSC| = 2(180◦ −
2β) + α = 243◦, so C lies in the same quadrant as in the sketch, we have
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|SF2| = |BS| sinα = 0.45|BS| = 0.45R, and |OF2| = R + |SF2| = 1.45R. The
2nd point source for the interference pattern is F2, as the rays look like coming
from F2.

Now, what we see in the picture is a double slit experiment, with distance
of slits (1.45 − 0.29)R = 1.16R. By measuring distances between neighboring
intensity minima relative to the image size in photos 2-5, we obtain that to be
(on average) approx. 0.12.

Let’s utilize the fact that rays tilted by an angle θ from the optical axis o of
the lens cross the focal plane of the lens at a distance fθ from o.

The angular spacing between θ of pairs of rays corresponding to neighboring
minima (or maxima) is known to be ∆θ = λ

1.16R (the distance between slits is
1.3R), and the corresponding distance in the focal plane is ∆y = f∆θ = fλ

1.16R .
Now, let’s approximate the bubble (which is probably much smaller than the

lens) by a single point source. 2 rays incident on the lens can only have θ differ
by as much as θm = D

L (near the lens, they can only be as much as D apart;
using D � L approximation). The image of the bubble in the focal plane, which
is formed only by such rays, then has diameter y = fθm = fD

L .
The image we obtain is just a magnified version of the one in the focal plane,

so in it, the relative distance between neighboring minima ∆y
y remains the same;

from that, we have
∆y

y
= 0.12 =

λL

1.16RD

R = 29µm

and the bubble diameter is then approximately 58 µm.
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