
Course Project: Sudoku

ITI0212

Due: 05/31/2024

1 Introduction

The purpose of this project is to implement a Sudoku game using the Idris
programming language. Sudoku is a popular puzzle game that involves filling
in a 9x9 grid with digits so that each column, each row, and each of the nine
3x3 sub-grids contain all of the digits from 1 to 9. The goal of the game is to
fill in the entire grid with the correct digits.

For this project, you will define a representation for the Sudoku table, and
implement some basic functions that act on the table. Then, you will create
a parser and a pretty-printer that can read and write Sudoku tables to files.
Finally, you will be guided towards writing a fully automatic solver for Sudoku
tables.

1.1 About the project

These tasks are intentionally less precisely specified than those in the labs and
homeworks. You will need to use good judgement and programming practice
to decompose each task into parts (types, functions, interfaces, etc.) that work
together in a logical, modular, efficient, and elegant way to solve the problem
at hand. This leaves you with quite a lot of freedom, and you may take any
approach you like provided that it conforms to the specifications and the spirit
of the assignment.

For example, it would violate the spirit of the assignment if you were to find
an already implemented solution online, import it, and simply call the relevant
functions. Thus, except for in the last task you must obtain permission from an
instructor if you wish to use modules other than those found in the standard
library.

Your solution to each of the following tasks should include a comment in
your source file specifying the task number and briefly explaining the structure
of your solution. If there are some parts of your program that are likely to be
confusing, are unimplemented, or that contain known bugs, you should explain
them in comments as well.

In short, use good coding practice so that readers of your program (including
your future self) can understand as easily as possible how it works. In any event,
your submitted source file(s) should load without syntax or type errors. Submit
your project by pushing it to your course GitLab repository in a directory called
project. Your submission should include a plain-text README file containing any
information needed to load and run your program as intended.

1

The assignment will be marked out of 100 points. As with the homework
assignments, approximately 2/3 of this will be for correctness and functionality,
with the other 1/3 for programming style (clarity, concision, efficiency).

2

2 Example

Here is an example of a possible input Sudoku table:

5 3 7

6 1 9 5

9 8 6

8 6 3

4 8 3 1

7 2 6

6 2 8

4 1 9 5

8 7 9

In this example some of the cells are filled in with numbers, while others
are empty. The goal of the game is to fill in the empty cells with the correct
numbers so that each row, column, and 3x3 sub-grid contains all of the digits
from 1 to 9. In this particular grid, the solution is:

5 3 4 6 7 8 9 1 2

6 7 2 1 9 5 3 4 8

1 9 8 3 4 2 5 6 7

8 5 9 7 6 1 4 2 3

4 2 6 8 5 3 7 9 1

7 1 3 9 2 4 8 5 6

9 6 1 5 3 7 2 8 4

2 8 7 4 1 9 6 3 5

3 4 5 2 8 6 1 7 9

Notice how each row, column, and 3x3 sub-grid contains all of the digits
from 1 to 9 exactly once. Note that not all Sudokus have a unique solution, and
that some Sudokus have no solution at all. We give an example for this last
case:

3

9 ?

8

7

6

5

4

3

2

1

Here the Sudoku is valid (i.e., there are no duplicate numbers in any row, column
or subsquare), but there is no way to fill the cell indicated with a ‘?‘.

4

3 Tasks

In this section we introduce the main points of the project that you should
implement. In order to get the maximum grade, you should implement all the
tasks in this section. If you implement fewer tasks than the ones required, your
score will be proportional to the difficulty of the tasks you successfully solved
and the quality of your solutions. You might find it helpful to start working
through the tasks in order, since they build on each other.

Task 1 (Representation). You will need to define a representation SudokuTable

for the entire Sudoku table and all the numbers inside a table. You might choose
any representation to your liking, but it should eventually be able to support
the functions defined below. (Hint: A good table representation should be able
to represent both a partially filled table as well as a complete table.)

Task 2 (Operations on tables). With this representation, you must also define
the following functions:

1. A function index such that index s i j evaluates to the number in the
table s : SudokuTable at position (i, j). The function should be able
to deal with out of bound indices; you can deal with this problem however
you prefer.

2. A function update such that, given an input table s : SudokuTable, the
expression update s i j n evaluates to a table s’ : SudokuTable such
that index s’ i j == n, and the rest of s’ is the the same as s. In other
words, the function updates the cell at position (i, j) with the given value.
You may again decide how to deal with filling already filled cells, and out
of bound indices.

3. A function difficulty which, given a table s : SudokuTable, returns
the difficulty of a Sudoku grid. The difficulty of a table is defined as the
sum of the number of empty cells in the table divided by the total number
of cells in the grid.

4. A function isValid that checks if the given table s : SudokuTable is
valid, meaning that each digit from 1 to 9 appears at most once in each
row, column, and 3x3 sub-grid (so in particular, a completely empty grid
should be valid).

5. A function isComplete that checks if the table is complete, meaning that
the table is valid and all cells have been filled with digits.

Before diving into coding, we encourage you to take a pen and paper, and define
specifications for you project, by answering questions like:

• What is a good representation for a Sudoku table that is easy to manip-
ulate and work with?

• How should we represent cells and their contents in a Sudoku table?

• What would/should happen if a user tried to access an out-of-bound index
in the table, etc.

5

Task 3 (Parser). You will need to implement a parser that can read in a Sudoku
table from a file. The parser should be able to handle files that contain partially
filled tables as well as complete tables. You are free to choose whatever format
you like for the input file, but ideally it should be human-readable and easy to
edit. You should also include a sample input file in your submission along with
a simple testing function, so that we can more easily see that your parser works.
You are free to deal with invalid input files however you prefer.

Task 4 (Pretty-printer). You will need to implement a pretty-printer that can
output a Sudoku table to a file or to a terminal in a human-readable format.
We gave you full freedom to choose a nice representation for the input table;
for the pretty-printer cell, however, we ask you to output the table in a very
specific format:

5 3 7

6 1 9 5

9 8 6

8 6 3

4 8 3 1

7 2 6

6 2 8

4 1 9 5

8 7 9

should be printed as:

+-------+-------+-------+

| 5 3 | 7 | |

| 6 | 1 9 5 | |

| 9 8 | | 6 |

+------ +-------+-------+

| 8 | 6 | 3 |

| 4 | 8 3 | 1 |

| 7 | 2 | 6 |

+------ +-------+-------+

| 6 | | 2 8 |

| | 4 1 9 | 5 |

| | 8 | 7 9 |

+-------+-------+-------+

(Thus, an empty cell should be represented by a space).

Task 5 (Interactive game). Write an interactive game in which the user can
progressively fill the Sudoku table, with the program checking whether the num-
bers and the positions inserted by the user are valid. For instance, a possible
game interaction could happen as follows:

6

SudokuProject> Current grid, 1 cell(s) missing:

+-------+-------+-------+

| 5 4 | 6 7 8 | 9 1 2 |

| 6 7 2 | 1 9 5 | 3 4 8 |

| 1 9 8 | 3 4 2 | 5 6 7 |

+-------+-------+-------+

| 8 5 9 | 7 6 1 | 4 2 3 |

| 4 2 6 | 8 5 3 | 7 9 1 |

| 7 1 3 | 9 2 4 | 8 5 6 |

+-------+-------+-------+

| 9 6 1 | 5 3 7 | 2 8 4 |

| 2 8 7 | 4 1 9 | 6 3 5 |

| 3 4 5 | 2 8 6 | 1 7 9 |

+-------+-------+-------+

Enter (i, j)-coordinates:

>>2 1

SudokuProject> Enter the number to fill the cell (2, 1):

>>5

SudokuProject> Impossible to fill the cell (2, 1) with 5. Enter another number:

>>3

SudokuProject> Congratulations, the grid is now solved.

+-------+-------+-------+

| 5 3 4 | 6 7 8 | 9 1 2 |

| 6 7 2 | 1 9 5 | 3 4 8 |

| 1 9 8 | 3 4 2 | 5 6 7 |

+-------+-------+-------+

| 8 5 9 | 7 6 1 | 4 2 3 |

| 4 2 6 | 8 5 3 | 7 9 1 |

| 7 1 3 | 9 2 4 | 8 5 6 |

+-------+-------+-------+

| 9 6 1 | 5 3 7 | 2 8 4 |

| 2 8 7 | 4 1 9 | 6 3 5 |

| 3 4 5 | 2 8 6 | 1 7 9 |

+-------+-------+-------+

3.1 Solver

Finally, we will guide you towards implementing a Sudoku solver that can pro-
vide a solution for a partially filled Sudoku table.

There is a number of approaches that can be taken to tackle the problem of
solving a Sudoku table. Among these:

(A) You might want to implement a brute-force search, in which you simply
test all possible numbers for each square, and test whether the final table
is a valid solution;

(B) You could implement a more sophisticated algorithm that uses backtrack-
ing: try to place a number in a given square, and whenever the table cannot
be filled you go back and try another with number;

7

(C) You can imagine starting by putting in each hole the list of numbers that
would fit, and then progressively remove from each list the numbers that
are already present until a solution is reached.

We present you two implementation guides that you can choose to follow:
one is based on approach B and implemented using the List monad; the other
follows approach C using progressive refinements of the table.

You can choose to follow either approach to implement the solver,
we only require you to implement one of the two approaches listed
below.

3.2 Approach B: Backtracking in the List monad

One of the interpretation for the List monad is that computation in this monad
represents non-deterministic computation.

do

-- ... some previous computation

x <- xs

-- ... whatever computation follows will be performed

-- for any possible choice of x in xs.

An example: let’s compute the Cartesian product of two lists:

l1 = [1, 2]

l2 = [’a’, ’b’, ’c’]

prod = do

x <- l1

y <- l2

pure (x, y)

-- prod == [(1, ’a’), (1, ’b’), (1, ’c’), (2, ’a’), (2, ’b’), (2, ’c’)]

This definition of prod can be read as follows: first take any element x from
l1, then take any element y from l2, then put them together in a tuple.

A function returning a list l represents a nondeterministic computation re-
turning any of the elements in l. In particular, pure represents the monadic
computation that terminates with precisely one result. Furthermore, a compu-
tation returning the empty list is a computation that has no result at all.

This behaviour allows to write computations in which you have to make
choices when you are unsure of the choice to be made, or when you have to
return the result of all possible choices in the process. You make a choice, and
if it turns out to be wrong, you return the empty list. The List monad takes
care of the backtracking for you.

Let us find all the pairs of integers from 0 to 3 such that their sum is even:

even : Integer -> Bool

even n = n ‘mod‘ 2 == 0

l3 = [0, 1, 2, 3]

evenSums = do

8

x <- l3

y <- l3 -- take two elements from l3

if (even (x + y)) -- if their sum is even

then pure (x, y) -- they are a good pick, so return them

else [] -- else return nothing

-- evenSums == [(0, 0), (0, 2), (1, 1), (1, 3), (2, 0), (2, 2), (3, 1), (3, 3)]

A way to obtain all possible solutions to a sudoku then is the following:

• if the sudoku is not valid, that is, the digits that were already inserted do
not respect the rules, than it has no solution;

• otherwise, if the sudoku is completely filled, it has only one solution, that
is, itself;

• finally, if the sudoku is not completely filled, we take the first hole, then
we nondeterministically pick a digit to insert in the hole, we update the
sudoku and we solve the updated version.

Task 6 (Check for holes). Your sudoku representation should allow tables with
hole, that is, cells that have not been filled with a digit. Write a function
findHole that given a sudoku returns Nothing if it is completely filled, and
Just (i, j) if it finds a hole at coordinates i, j. Hint: better not to scan the
whole table if a hole is found soon enough.

Task 7 (Solve the sudoku!). Write a function solve that takes a sudoku and
applies the approach hinted above to return a List of all possible solutions. You
should use the findHole function you just wrote, and the isValid function that
you should have by now.

3.3 Approach C: Progressive refinement

In this section, we will guide you through developing a solver by adopting a
slightly different representation for tables. The core idea to write a solver is the
following: use a clever representation that represents holes in the table with list
of (valid) possibilities.

To each cell in the grid, we associated it a list whose entries should represent
a possible number that hasn’t appeared in either the corresponding row, column
or 3x3 square in the grid, in such a way that the cell could be filled with any of
the values in the list and still be a valid Sudoku grid.

Example 1. Let’s make an example. Consider the following table:

9

5 4 6 8 9 1 2

6 7 2 1 9 3 8

9 8 3 4 2 5 6

8 5 9 7 6 1 4 2 3

6 8 c 3 7 9 1

7 1 3 9 2 4 8 5 6

9 6 5 7 2 8

2 8 7 1 6 5

t 5 2 6 7 9

Take t to be the left-most cell of the Sudoku on the last row. The list of
possibilities for t are [1,4,3], since those are the only valid numbers that can be
placed in the cell; if you put any other number there, the table would become
invalid.

Or, consider the cell c placed at the very center of the board. The list of
possibilities for c is just [5], since every other number is present in either its
corresponding row, column, or 3x3 square. Since the list of possibilities for c is
a singleton, we can conclude that c must be 5.

Since we now know that 5 must be in the center of the board, we can remove
5 from the list of possibilities for all the cells in the same row, column and 3x3
square as c. This will eventually cause other lists to become singletons, which
we can propagate again, and so on until we reach a point where the table does
not change anymore.

You might find it useful to define the following functions, which we provide
as small subtasks.

Task 8 (Constraint propagation). Define a function which, given a (valid) po-
sition in the table (i, j) and a number n, removes the number n from the pos-
sibility lists of all the cells in the corresponding i-th row, in the corresponding
j-th column, and in the corresponding 3x3 square of the Sudoku where (i, j) is
contained.
Note: you should not remove n from the possibility list of the cell (i, j) itself.

Task 9 (Propagate all constraints). Define a function which applies the con-
straint propagation function to each cell where there is only one number in the
list of possibilities.

The idea behind the solver is the following: we start with a table where each
number that is already present in the input table is represented as a singleton
list with the number itself, and each hole is represented initially as the list of
all possibilities [1,2,3,4,5,6,7,8,9]. Then, you repeat the process of propagating
constraints on singleton cells, so that the lists on each hole decreases in size.
We keep repeating this until the table does not change anymore, at which point
one of three possible cases will be reached:

• There is only one possibility (singleton list) for each cell inside the table,
so the table has been successfully completed;

10

• There are still some cells which have more than one possibility: this means
that the initial input table does not have an unique solution, and so it is
underspecified. It is okay to simply tell the user that the table is under-
specified, so you are not required to output every possible solution of the
Sudoku.

• There’s at least one cell with no possibilities (empty list), so the table is
impossible to solve!

Task 10 (Solve the sudoku!). Write a function which solves a Sudoku table by
iterating the propagate-all-constraints function until the table does not change
anymore. One of the three states described above will be reached.

4 Project submission

Your project should include the following:

• A fully documented Idris code that implements the requirements specified
above.

• A README file that describes how to run your program and any depen-
dencies that are required.

• A sample input file that contains a partially filled Sudoku table.

• A sample Game.idr Idris file whose main function allows you to play the
interactive game described in 5.

• A sample TestSolve.idr Idris file whose main function reads the input
Sudoku file you gave in the previous bullet point, pretty-prints the input
Sudoku to the terminal, and uses your solver on the Sudoku.

• The rest of the code can be structured and placed in your folder the way
you prefer, as long as all tasks are implemented.

11

	Introduction
	About the project

	Example
	Tasks
	Solver
	Approach B: Backtracking in the List monad
	Approach C: Progressive refinement

	Project submission

