
Homework 1

ITI0212

Due: 01/03/2024

Place your solutions in a module named Homework1 in a file with path
homework/Homework1.idr within a repository called iti0212-2024 on the Tal-
Tech GitLab server (https://gitlab.cs.ttu.ee/). Submit only your Idris
source file. Do not include any build artifacts, such as .tmp, .ttc, or .ttm files.
At the beginning of the file include a comment containing your name. Precede
each problem’s solution with a comment specifying the problem number.

Whether or not it is complete, the solution file that you submit should load
without errors. If you encounter a syntax or type error that you are unable
to resolve, use comments or holes to isolate it from the part of the file that is
interpreted by Idris.

Your solutions will be pulled automatically for marking shortly after the due
date.

Problem 1. The Fibonacci function was discovered over 2200 years ago and
describes a surprising array of phenomena. It has the following type:

fib : Nat -> Nat

and is recursively defined as:

fib n =

{
n if n = 0 or n = 1

fib (n− 1) + fib (n− 2) otherwise

Write the Fibonacci function in Idris by pattern matching on the input. Confirm
that it returns correct results for some low argument values according to https:
//oeis.org/A000045.

Problem 2. Write a recursive definition for the exponentiation function on the
natural numbers, mn:

exp : Nat -> Nat -> Nat

For example:

Homework1> exp 2 0

1

Homework1> exp 2 1

2

Homework1> exp 2 2

4

Homework1> exp 2 3

8

1

https://gitlab.cs.ttu.ee/
https://oeis.org/A000045
https://oeis.org/A000045


Hint: Think about in which argument this function is recursive, and use your
inductive definition of multiplication from lab 2 as a guide.

Problem 3. Write a (total) function with each of the following types:

Either a a -> a

Pair (Pair a b) c -> Pair a (Pair b c)

Pair a (Either b c) -> Either (Pair a b) (Pair a c)

Recall the REPL command :total, which you can use to ensure that your
function definitions are total.

Problem 4. Recall the type constructor for node-labeled binary trees from lab
3. Write a function that reflects the structure of a tree.

reflect : Tree a -> Tree a

For example:

5 5

/ \

1 --reflect--> 1

\ /

3 3

and

4 4

/ \ / \

/ \ / \

2 6 --reflect--> 6 2

/ \ / \ / \ / \

1 3 5 7 7 5 3 1

Problem 5. Write a function that returns the least (i.e., smallest) Integer in
a list, if there is one:

least : List Integer -> Maybe Integer

For example:

Homework1> least []

Nothing

Homework1> least [1]

Just 1

Homework1> least [3, 2, 1, 1, 2, 3]

Just 1

Hint: You can use the function

min : Integer -> Integer -> Integer

to get the smaller of two Integers.

2



Problem 6. Define a type isomorphism between the types Maybe a and Either Unit a,
generically in the parameter type a. Recall from lab 3 that this means defining
back-and-forth functions,

to : Maybe a -> Either Unit a

from : Either Unit a -> Maybe a

such that for any x : Maybe a and y : Either Unit a we have both:

• from (to x) == x

• to (from y) == y

Problem 7. Write the zip function for Trees, which has the following type:

zip_tree : (a -> b -> c) -> Tree a -> Tree b -> Tree c

which should behave as follows:

4 4 4

/ \ / \ / \

/ \ / \ / \

2 6 6 2 --zip_tree max--> 6 6

/ \ / \ / \ \ /

1 3 5 5 3 1 5 5

Problem 8. This problem has two parts:

(i) Write the flatten function for lists:

flatten_list : List (List a) -> List a

which should behave as follows:

Homework1> flatten_list []

[]

Homework1> flatten_list [[] , [] , []]

[]

Homework1> flatten_list [[1,2,3] , [4,5,6] , [7,8,9]]

[1, 2, 3, 4, 5, 6, 7, 8, 9]

Homework1> flatten_list [[1,2,3],[],[1]]

[1,2,3,1]

(ii) Now rewrite the flatten function for lists using the fold for lists, which was
presented in lecture 4 and has the following type:

fold_list : b -> (a -> b -> b) -> List a -> b

Note: Your solution should only call this function and not use any pattern-
matching or recursion. In other words, you should write this function by
completing the goals ?n and ?c below.

flatten_list’ : List (List a) -> List a

flatten_list’ = fold_list ?n ?c

Hint: :doc Prelude.List.(++).

3


