Homework 1

ITI0212

Due: 01/03/2024

Place your solutions in a module named Homework1 in a file with path homework/Homework1.idr within a repository called iti0212-2024 on the TalTech GitLab server (https://gitlab.cs.ttu.ee/). Submit only your Idris source file. Do not include any build artifacts, such as .tmp, .ttc, or .ttm files. At the beginning of the file include a comment containing your name. Precede each problem's solution with a comment specifying the problem number.

Whether or not it is complete, the solution file that you submit should load without errors. If you encounter a syntax or type error that you are unable to resolve, use comments or holes to isolate it from the part of the file that is interpreted by Idris.

Your solutions will be pulled automatically for marking shortly after the due date.

Problem 1. The Fibonacci function was discovered over 2200 years ago and describes a surprising array of phenomena. It has the following type:
fib : Nat -> Nat
and is recursively defined as:

$$
\mathrm{fib} n= \begin{cases}n & \text { if } n=0 \text { or } n=1 \\ \mathrm{fib}(n-1)+\mathrm{fib}(n-2) & \text { otherwise }\end{cases}
$$

Write the Fibonacci function in Idris by pattern matching on the input. Confirm that it returns correct results for some low argument values according to https: //oeis.org/A000045.

Problem 2. Write a recursive definition for the exponentiation function on the natural numbers, m^{n} :

```
exp : Nat -> Nat -> Nat
```

For example:

```
Homework1> exp 2 0
1
Homework1> exp 2 1
2
Homework1> exp 2 2
4
Homework1> exp 2 3
8
```

Hint: Think about in which argument this function is recursive, and use your inductive definition of multiplication from lab 2 as a guide.

Problem 3. Write a (total) function with each of the following types:
Either a a -> a

Pair (Pair a b) c \rightarrow Pair a (Pair b c)

Pair a (Either b c) -> Either (Pair a b) (Pair a c)
Recall the REPL command :total, which you can use to ensure that your function definitions are total.

Problem 4. Recall the type constructor for node-labeled binary trees from lab 3 . Write a function that reflects the structure of a tree.

```
reflect : Tree a -> Tree a
```

For example:

and

Problem 5. Write a function that returns the least (i.e., smallest) Integer in a list, if there is one:

```
least : List Integer -> Maybe Integer
```

For example:

```
Homework1> least []
Nothing
Homework1> least [1]
Just 1
Homework1> least [3, 2, 1, 1, 2, 3]
Just 1
```

Hint: You can use the function
min : Integer $->$ Integer $->$ Integer
to get the smaller of two Integers.

Problem 6. Define a type isomorphism between the types Maybe a and Either Unit a, generically in the parameter type a. Recall from lab 3 that this means defining back-and-forth functions,

```
to : Maybe a -> Either Unit a
from : Either Unit a -> Maybe a
```

such that for any x : Maybe a and y : Either Unit a we have both:

- from (to x) $==x$
- to (from y) == y

Problem 7. Write the zip function for Trees, which has the following type:

```
zip_tree : (a -> b -> c) -> Tree a -> Tree b -> Tree c
```

which should behave as follows:

Problem 8. This problem has two parts:
(i) Write the flatten function for lists:

```
flatten_list : List (List a) -> List a
```

which should behave as follows:
Homework1> flatten_list []
[]
Homework1> flatten_list [[] , [] , []]
[]
Homework1> flatten_list $[[1,2,3]$, $[4,5,6]$, [7,8,9]]
$[1,2,3,4,5,6,7,8,9]$
Homework1> flatten_list [[1, 2, 3], [], [1]]
$[1,2,3,1]$
(ii) Now rewrite the flatten function for lists using the fold for lists, which was presented in lecture 4 and has the following type:
fold_list : b -> (a -> b -> b) -> List a -> b
Note: Your solution should only call this function and not use any patternmatching or recursion. In other words, you should write this function by completing the goals ?n and ?c below.

```
flatten_list' : List (List a) -> List a
flatten_list' = fold_list ?n ?c
```

Hint: : doc Prelude.List. (++).

