
Homework 2

ITI0212

Due: 29/03/2024

Place your solutions in a module named Homework2 in a file with path
homework/Homework2.idr within a repository called iti0212-2024 on the Tal-
Tech GitLab server (https://gitlab.cs.ttu.ee/). Submit only your Idris
source file. Do not include any build artifacts, such as .tmp, .ttc, or .ttm files.
At the beginning of the file include a comment containing your name. Precede
each problem’s solution with a comment specifying the problem number.

Whether or not it is complete, the solution file that you submit should load
without errors. If you encounter a syntax or type error that you are unable
to resolve, use comments or holes to isolate it from the part of the file that is
interpreted by Idris.

Your solutions will be pulled automatically for marking shortly after the due
date.

Problem 1. A queue is a data structure with two “ends”. An empty queue
contains no data. Given any queue we can push an element onto its back end,
and if it is not empty, we can also pop an element off of its front end in a
first-in–first-out manner.

interface Queue (queue : Type -> Type) where

emp : queue a

push : a -> queue a -> queue a

pop : queue a -> Maybe (Pair a (queue a))

A list can be used as a simple (if inefficient) form of queue. Write a Queue

implementation for the List type in Idris, so that:

Homework2> the (List Nat) ((push 3 . push 2 . push 1) emp)

[1, 2, 3]

Homework2> pop (the (List Nat) [1, 2, 3])

Just (1 , [2, 3])

Homework2> pop (the (List Nat) [])

Nothing

Problem 2. Recall that Lists are necessarily finite sequences of data, Streams
are necessarily infinite sequences of data, and Colists are sequences of data
that may be either finite or infinite. Because of this, it should always be safe
to convert a List or a Stream to a Colist containing the same elements in the
same order.

Write Cast instances to convert both Lists and Streams to the correspond-
ing Colists.

1

https://gitlab.cs.ttu.ee/


implementation Cast (List a) (Colist a) where

implementation Cast (Stream a) (Colist a) where

Both cast methods should be total.

Problem 3. Write the (proper) predecessor function for natural numbers:

pred : Nat -> Maybe Nat

then write the unroll function (see lab 7, task 5) for colists:

unroll : (a -> Maybe a) -> a -> Colist a

so that

Homework2> take 5 (unroll pred 5)

[5, 4, 3, 2, 1]

Homework2> take 5 (unroll pred 3)

[3, 2, 1, 0]

Why does the result sequence type of this function need to be a Colist and not
a List or a Stream?

Problem 4. Write Eq and Ord instances for the coinductive type of conatural
numbers such that each number is equal to only itself, and is greater than
another number just in case it contains more Succ constructors.

For example:

Homework2> coN 42 == coN 42

True

Homework2> coN 42 == coN 43

False

Homework2> coN 42 < coN 43

True

Homework2> coN 42 < infinity

True

You will need to mark your implementations as partial because Idris will
(rightly) suspect that they are not total.

partial

implementation Eq Conat where

partial

implementation Ord Conat where

Demonstrate the partiality of these implementations by giving an example of an
equality or ordering comparison that does not produce a result in finite time.

Problem 5. Write functions with each of the following types:

joinIO : IO (IO a) -> IO a

mapIO : (a -> b) -> IO a -> IO b

2



Do this without using standard library functions that we haven’t yet discussed
in this course. Specifically, your definitions should be written in terms of the IO
combinators that we learned about, pure : a -> IO a and (>>=) : IO a -> (a -> IO b) -> IO b,
or the do-notation syntactic sugar, if you prefer.

Problem 6. Write a function that takes either a computation that when run
produces a result of type a or a computation that when run produces a result of
type b, and returns a computation that when run, runs whichever computation
was given and produces the corresponding result:

eitherIO : Either (IO a) (IO b) -> IO (Either a b)

Now write a function that takes both a computation that when run produces a
result of type a and a computation that when run produces a result of type b,
and returns a computation that when run, runs the two computations in order
and produces the pair of their results:

bothIO : Pair (IO a) (IO b) -> IO (Pair a b)

Problem 7. Write an IO computation,

get_number : IO (Maybe Integer)

that has the following behaviour: it prints a message asking the user to provide
a number, then returns Just n if the user’s input can be parsed as the number
n, and Nothing otherwise.

Hint: You may want to import Data.String and :doc parsePositive.

Now write a function,

insist : IO (Maybe a) -> IO a

which returns a computation that when run, runs the argument computation
repeatedly until it results in a value Just x for some x : a, at which point it
produces the result x.

For example,

Homework2> :exec insist get_number >>= printLn

Please enter a number: no

Please enter a number: i don’t want to

Please enter a number: okay, fine

Please enter a number: 42

42

3


