
Homework 4

ITI0212

Due: 05/10/2024

Place your solutions in a module named Homework4 in a file with path
homework/Homework4.idr within a repository called iti0212-2024 on the Tal-
Tech GitLab server (https://gitlab.cs.ttu.ee/). Submit only your Idris
source file. Do not include any temporary files or build artifacts, such as .swp,
.tmp, .ttc, or .ttm files.

At the beginning of the file include a comment containing your name. Pre-
cede each problem’s solution with a comment specifying the problem number.

Whether or not it is complete, the solution file that you submit should load
without errors. If you encounter a syntax or type error that you are unable
to resolve, use comments or holes to isolate it from the part of the file that is
interpreted by Idris.

Your solutions will be pulled automatically for marking shortly after the due
date.

Note: you should to add %default total to the beginning of your script.
This will tell Idris that all the functions we are defining should be total, so that
we do not accidentally fall into the case in which we can prove any statement
by simply giving a function that does not terminate.

Note: the latter part of this assignment references the encoding of the con-
nectives of first-order logic covered in Lecture 11. You will need to add the
following definitions from Lecture 11 to your Idris file:

Or : Type -> Type -> Type

Or = Either

And : Type -> Type -> Type

And = Pair

Implies : Type -> Type -> Type

Implies a b = a -> b

Exists : (a : Type) -> (p : a -> Type) -> Type

Exists = DPair

Forall : (a : Type) -> (p : a -> Type) -> Type

Forall a p = (x : a) -> (p x)

Problem 1. Recall the type <= from Lecture 10:

data (<=) : (p : Nat) -> (n : Nat) -> Type where

LeZ : 0 <= n

LeS : p <= n -> S p <= S n

1

https://gitlab.cs.ttu.ee/

and define the type IsSorted that tells if a list of natural numbers is sorted:

data IsSorted : List Nat -> Type where

NilSort : IsSorted []

SinglSort : IsSorted [x]

ConsSort : IsSorted (y :: ys) -> x <= y -> IsSorted (x :: y :: ys)

Prove that the list [0, 1, 2, 3] is sorted, that is, build a function of type:

is_sorted_0123 : IsSorted [0, 1, 2, 3]

Problem 2. Prove that if a list is sorted, then adding one to every element will
result in a list that is again sorted. That is, write a function with the following
type:

is_sorted_succ : (xs : List Nat) -> IsSorted xs -> IsSorted (map S xs)

Problem 3. Recall that the function replicate : Nat -> a -> List a takes
a natural number n : Nat, an element x : a, and returns the constant list with
n times the value x. Prove that such a list is always sorted, that is, construct a
function of the following type:

is_sorted_cst : (lg, val : Nat) -> IsSorted (replicate lg val)

Hint: recall from Lecture 10 that less or equal is reflexive, and do not forget
to add import Data.List at the beginning of your file to access the function
replicate.

Problem 4 (De Morgan’s laws). As you might already be familiar from your
experience in other programming languages, the “and” and “or” operators can
be switched into one another using negation. These equivalences between the
two operators are also known as De Morgan’s laws: let’s prove some of them in
Idris. First, show that, if the “and” of two statements holds, then it is impossible
for either one of the two statements to be false:

and_not_or : (a ‘And‘ b) ‘Implies‘ Not (Not a ‘Or‘ Not b)

Similarly, if the “or” of two statements holds, then it must be impossible for
both statements to be false at the same time.

or_not_and : (a ‘Or‘ b) ‘Implies‘ Not (Not a ‘And‘ Not b)

Finally, if the “or” of two statements is false, then both statements must be
false at the same time. Prove it along with the converse statement:

not_or : Not (a ‘Or‘ b) ‘Implies‘ (Not a ‘And‘ Not b)

not_or’ : (Not a ‘And‘ Not b) ‘Implies‘ Not (a ‘Or‘ b)

(Interestingly, the converse of and not or and or not and are equivalent to
the law of excluded middle, so they are once again unprovable in Idris. For the
adventurous reader: can you prove not and along with its converse?)

Problem 5 (Universals and disjunctions). Someone tells you that every element
of type t satisfies p, but another person tells you that they actually satisfy q. If
one of them is right, then you certainly know that every element satisfies either
p or q. Prove this in Idris:

2

https://en.wikipedia.org/wiki/De_Morgan%27s_laws

forall_or : (Forall t p ‘Or‘ Forall t q)

‘Implies‘ Forall t (\x => p x ‘Or‘ q x)

If you can find an element such that p and an element such that Not . p,
then you cannot prove that either Not . p always holds or that p always holds.
Show it in Idris:

exist_p_not_p : ((Exists a p) ‘And‘ (Exists a (Not . p)))

-> Not (Forall a p ‘Or‘ Forall a (Not . p))

Problem 6 (Fun with the law of excluded middle). Prove that, for a specific
proposition a, if we assume the law of excluded middle (or more simply, LEM)
then we can also prove double negation elimination (or more simply, DNE).

lem_to_dne : a ‘Or‘ Not a

-> Not (Not a) ‘Implies‘ a

Despite us not being able to show in Idris that LEM holds, we can prove some-
thing quite close to it. Prove that it must be impossible for LEM to be false:

not_not_lem : Not (Not (a ‘Or‘ Not a))

From this, you can clearly see that if we had DNE we would be able to remove
the two negations and recover LEM, and thus give an algorithm to decide truth
or falsity of any mathematical theorem!

(Hint : there is only one way of proving this. Keep in mind that when the
goal looks like a function, you should introduce a lambda-abstraction, and when
the goal looks like an Either you can simply try Left or Right as argument
and see which one works! Another hint: when proving this negation, you should
use your hypothesis twice.)

Problem 7. Show that if two vectors are equal then so are their lengths:

same_length : {xs : Vect m a} -> {ys : Vect n a} ->

xs = ys -> length xs = length ys

Now show that if two vectors are equal then they have the same element at each
index:

same_elments : {xs , ys : Vect n a} ->

xs = ys -> index i xs = index i ys

Finally, show that two vectors with different head elements are different:

different_heads : {xs , ys : Vect n a} ->

Not (x = y) -> Not (x :: xs = y :: ys)

Problem 8 (List is a functor). We presented the Functor interface in lecture
5 for type constructors with a higher-order map function. Such a map function
is supposed to preserve identity functions and function composition. These
properties can be encoded (pointwise) using the following interface:

interface Functor t => FunctorV (t : Type -> Type) where

pres_idty : (xs : t a) -> map Prelude.id xs = xs

pres_comp : (f : a -> b) -> (g : b -> c) -> (xs : t a) ->

map (g . f) xs = (map g . map f) xs

3

Prove that List is a functor (pointwise) by instantiating the above interface for
List.

FunctorV List where

pres_idty xs = ?identity_preservation

pres_comp f g xs = ?composition_preservation

Problem 9 (Reversing a list is an involution). Here is the definition of a func-
tion that reverses lists:

rev : List a -> List a

rev [] = []

rev (x :: xs) = rev xs ++ [x]

We want you to prove that reversing a list twice yields the original list. The
goal of this problem is the following:

rev_inv : (xs : List a) -> rev (rev xs) = xs

In a similar way to what we did for commutativity of addition in lecture 12,
one way to prove this proceeds by observing how rev acts on constructors. In
particular, it will be useful to begin by proving the following lemma (you just
have to fill in the preorder reasoning steps):

rev_inv_cons : (x : a) -> (xs : List a) ->

rev (xs ++ [x]) = x :: rev xs

rev_inv_cons x [] = ?rev_inv_cons_0

rev_inv_cons x (y :: xs) =

let

IH = rev_inv_cons x xs

in Calc $

|~ rev ((y :: xs) ++ [x])

~~ rev (xs ++ [x]) ++ [y] ...(?rev_inv_cons_1)

~~ (x :: rev xs) ++ [y] ...(?rev_inv_cons_2)

~~ x :: (rev xs ++ [y]) ...(?rev_inv_cons_3)

~~ x :: rev (y :: xs) ...(?rev_inv_cons_4)

After this, you can prove the main theorem by induction on the list. You
are invited to try and do this from scratch, however, we also include a proof
sketch to help you:

rev_inv [] = ?rev_inv_0

rev_inv (x :: xs) =

let

IH = rev_inv xs

in Calc $

|~ rev (rev (x :: xs))

~~ rev (rev xs ++ [x]) ...(?rev_inv_1)

~~ x :: rev (rev xs) ...(?rev_inv_2)

~~ x :: xs ...(?rev_inv_3)

Hint: don’t forget to look for an opportunity to use the lemma rev_inv_cons!

4

