Homework 5

ITI0212
Due: 05/31/2024

Place your solutions in a module named Homework5 in a file with path
homework/Homework5. idr within a repository called iti0212-2024 on the Tal-
Tech GitLab server (https://gitlab.cs.ttu.ee/)). Submit only your Idris
source file. Do not include any temporary files or build artifacts, such as .swp,
.tmp, .ttc, or .ttm files.

At the beginning of the file include a comment containing your name. Pre-
cede each problem’s solution with a comment specifying the problem number.

Whether or not it is complete, the solution file that you submit should load
without errors. If you encounter a syntax or type error that you are unable
to resolve, use comments or holes to isolate it from the part of the file that is
interpreted by Idris.

Your solutions will be pulled automatically for marking shortly after the due
date.

All of your solutions in this assignment should be total. Idris can warn you
of potential non-totality if you include the %default total directive at the
beginning of your module. For this assignment we will not accept any solution
that uses Idris’s rewrite mechanism, which we did not introduce in this course.
Instead, you should the user-definable and type-directed alternatives that we
did learn about.

Problem 1. Convince Idris of the following mathematical fact:
plus_one_right : {n : Nat} >n +1=Sn

Problem 2. Write the following function that reverses the order of the elements
in a vector:

vect_reverse : {n : Nat} -> Vect n a -> Vect n a
For example:

Homework5> vect_reverse []

]

Homework5> vect_reverse [1]

[1]

Homework5> vect_reverse [1, 2]
[2, 1]

Homework5> vect_reverse [1, 2, 3]
[3, 2, 1]


https://gitlab.cs.ttu.ee/

Hint: You can reverse the element order using the simple structurally recursive
algorithm (for example in homework 4, problem 9), but you will find that in
the recursive case you need to do something in order to get from the computed
result type to the desired result type.

Problem 3. Prove that if two propositions are decidable then so is their con-
junction:

dec_and : Dec p -> Dec q -> Dec (p ‘And‘ q)
Prove that if a proposition is decidable then so is its negation:
dec_not : Dec p -> Dec (Not p)

Problem 4. Write the function that returns half of a natural number under
the constraint that the argument is even. For example:

Homework5> half O

0 : Nat
Homework5> half 2
1 : Nat

Homework5> half 3
Error: Can’t find an implementation for IsEven 3.

”

Hint: Recall that the error message, “can’t find an implementation for ...
can mean “can’t satisfy the constraint ...” because Idris uses the same search
mechanism for interface resolution and constraint solving.

Problem 5. Suppose you are hired to work on a video game. The state of the
player in the game is represented by the following record type:

record PlayerState where
constructor PS

health : Fin 11

wealth : Fin 101

Your job is to write the function that implements the interaction of the player
hiring a healer in the game:

hire_healer : PlayerState -> PlayerState

In this interaction the player increases their health by one unit in exchange
for 10 coins (the units of wealth). If the player does not have enough coins or
already has maximum health then no transaction occurs and the player’s state
remains unchanged.

Note: Arithmetic in Fin types is modular; i.e., it “wraps around” in the same
way as when we add or subtract time on a clock. But this need not concern us
so long as we don’t perform operations that overflow or underflow the Fin type.

Problem 6. Write a record type Complex for complex numbers with fields for
the real and imaginary parts, both of type Double, and a constructor called
(11). Don’t forget to add an infix declaration for this operator. Then write a
Num implementation for Complex. For example:



Homework5> 1 !! 2 + 3 Il 4

4.0 ' 6.0
Homework5> 1 !l 2 x 3 Il 4
-5.0 !'! 10.0

Homework5> the Complex (fromInteger 7)
7.0 ' 0.0



