
Lab 2

Functional Programming (ITI0212)

2023-02-10

This week we learned about inductive types and recursive functions. Inductive types are user-
defined types with any number of element constructors. These specify the possible ways of creating
elements of the given type, and each may take different numbers and types of arguments. Recursive
functions on inductive types use case analysis or pattern matching in order to specialize the function
being defined for the possible element constructors. These functions may call themselves using
recursive calls to compute the result for the current case using the results for other cases.

Task 1
An important function in digital circuit design is the xor function, which takes two Bool inputs
and returns True just in case they differ. Write this function in Idris.

Task 2
The two-element type Bool is used to represent the truth or falsity of a proposition. But sometimes
we are not so sure about things. Write a four-element type called Prob with elements named
Definitely, Likely, Doubtful, and Impossible.

Task 3
Write a negation function for Prob,

not : Prob -> Prob

that sends each element in the above list to the corresponding element of the reversed list (e.g.
Definitely ↦ Impossible).

Task 4
Write a conjunction function for Prob,

and : Prob -> Prob -> Prob

according to the following table:
↓ and → Definitely Likely Doubtful Impossible

Definitely Definitely Likely Doubtful Impossible
Likely Likely Likely Doubtful Impossible

Doubtful Doubtful Doubtful Doubtful Impossible
Impossible Impossible Impossible Impossible Impossible

For example:

Lab2> Definitely ‘and‘ Likely
Likely
Lab2> Impossible ‘and‘ Doubtful
Impossible

Challenge: try to write this definition using as few clauses as possible.

1



Task 5
Write the multiplication function for natural numbers.

mul : Nat -> Nat -> Nat

Hint: try using recursion on the first argument.

Task 6
The factorial function 𝑛! on the natural numbers can be characterized by the following recursive
specification:

𝑛! ≔ {1 if 𝑛 = 0
𝑛 × (𝑛 − 1)! otherwise.

Turn this recursive mathematical specification into a recursive function definition in Idris:

fact : Nat -> Nat

Task 7
Consider the following type, which is meant to represent geometric shapes.

data Shape : Type where
-- circle shape with given radius:
Circle : (radius : Double) -> Shape
-- rectangle shape with given width and height:
Rectangle : (width : Double) -> (height : Double) -> Shape
-- isosceles triangle shape with given base and height:
IsosTriangle : (base : Double) -> (height : Double) -> Shape

Write a function with the following type that computes the area of a shape.

area : Shape -> Double

Hint: :doc pi.

2


