
Lab 3

Functional Programming (ITI0212)

2023-02-17

This week we learned about parameterized type families, also known as type constructors. These
have types Type -> ... -> Type. For example, the List and Maybe type constructors each
take one type parameter, and thus have type Type -> Type; while the Pair and Either type
constructors each take two type parameters, and thus have type Type -> Type -> Type.

We also learned how to write generic functions, which act uniformly on the types of such families.
We saw how to use implicit arguments to avoid having to pass type arguments explicitly, and how
to use implicit binding to shorten the way that we write type specifications for these functions.
Recall that the quantity 0 is used to indicate that we treat a type generically, and that implicit
binding elaboration inserts this for us automatically.

By default, Idris suppresses implicit arguments when displaying types. However, we can use the
REPL command :ti in order to have Idris show us the full type of an expression, including all
implicit arguments.

Task 1
Write any function of the following type:

swap_pair : Pair a b -> Pair b a

Hint: Recall that this type elaborates to:

{0 a : Type} -> {0 b : Type} -> Pair a b -> Pair b a

thus any function you write must be generic in both a and b.

Task 2
Write any function of the following type:

swap_either : Either a b -> Either b a

Question: Did you have any choice in the functions you wrote in tasks 1 and 2?

Task 3
Write a generic function

reverse_list : List a -> List a

that reverses the order of the elements of a list; for example:

Lab3> reverse_list []
[]
Lab3> reverse_list [1]
[1]
Lab3> reverse_list [1, 2]
[2, 1]
Lab3> reverse_list [1, 2, 3]
[3, 2, 1]

1



Hint: Use recursion on the argument list. The list concatenation function that we wrote this week
in lecture will be helpful. It is also in the standard library as

Prelude.List.(++) : List a -> List a -> List a

Task 4
The following type constructor defines node-labeled binary trees or just “trees” for short.

data Tree : (a : Type) -> Type where
-- a tree is either empty:
Leaf : Tree a
-- or it is a left subtree, a current element, and a right subtree:
Node : (l : Tree a) -> (x : a) -> (r : Tree a) -> Tree a

It is customary to draw trees as downward-growing diagrams. For example, the Tree Nat

t1 = Node (Node Leaf 1 (Node Leaf 3 Leaf)) 5 Leaf

can be drawn as: 5

1

* 3

* *

*

, where the *s represent leaves. We may also omit the leaves: 5

1

3

.

Enter the definition of the Tree type constructor into your lab file and write the term for t2 :
Tree Nat corresponding to the following tree. 4

2

1 3

6

5 7

.

Hint: If the term you are trying to write gets too unwieldy you can always use a local definition
(let binding) to divide it into more manageable pieces.

Task 5
Write a generic function

size : Tree a -> Nat

that counts the number of nodes in a tree; for example:

Lab3> size t1
3
Lab3> size t2
7

Task 6
A type isomorphism is a pair of back-and-forth functions between two types, f : a -> b and
g : b -> a, such that if we apply either one to the result of applying the other then we get back
the original argument; that is, for any x : a and y : b we have that g (f x) evaluates to x
and f (g y) evaluates to y.

Write a type isomorphism between the types Nat and List Unit; that is, write functions

n_to_lu : Nat -> List Unit

lu_to_n : List Unit -> Nat

so that, for example:

2



Lab3> lu_to_n (n_to_lu 0)
0
Lab3> lu_to_n (n_to_lu 1)
1
Lab3> lu_to_n (n_to_lu 42)
42
Lab3> n_to_lu (lu_to_n [])
[]
Lab3> n_to_lu (lu_to_n [()])
[()]
Lab3> n_to_lu (lu_to_n [(), (), ()])
[(), (), ()]

3


