
Lab 4

Functional Programming (ITI0212)

2023-02-24

This week we learned about function literals and higher-order functions. Function
literals are free-standing expressions that represent values for the function types. We
can refer to the function with formal parameter x and body t using the (ASCIIfied)
λ notation \ x => t. For example, the generic identity function can be written as
\ x => x.

A higher-order function is a function that can take other functions as arguments or
return them as results. We saw how the map and filter functions for List types
allow us to perform tasks that would typically be done in imperative programming
languages using loops, and how the fold function for an inductive type lets us encode
its recursion principle inside a function and allows us to define other functions without
using pattern matching or recursion.

You can use the filter function for Lists in the standard library by writing
import Data.List at the beginning of your script file.

Task 1
Before consulting Idris, work out for yourself the types and values of the following
two expressions. (Don’t forget to copy the definition for is_even from lecture 2).

(map S . filter is_even)[0, 1, 2, 3]

(filter is_even . map S)[0, 1, 2, 3]

Then check your understanding by asking Idris to evaluate them for you.

Note: Since Idris overloads the syntax for List, you should either add the fol-
lowing %hide Prelude.SnocList.filter after the import statement or call
List.filter.

Task 2
Write the map function for Maybe types:

map_maybe : (a -> b) -> Maybe a -> Maybe b

so that

Lab4> map_maybe S Nothing
Nothing
Lab4> map_maybe S (Just 41)
Just 42

Task 3
Write a higher-order function that uses a given function to transform the element at
the specified index of a list:

transform : (f : a -> a) -> (index : Nat) -> List a -> List a

1



If the index is out-of-bounds for the list then your function should behave like the
identity function. For example:

> transform S 0 [1, 2, 3]
[2, 2, 3]
> transform S 1 [1, 2, 3]
[1, 3, 3]
>transform S 2 [1, 2, 3]
[1, 2, 4]
>transform S 3 [1, 2, 3]
[1, 2, 3]

Task 4
Use a function literal (λ-expression) and the filter function for lists to write the
following function:

ignore_lowerCaseVowels : String -> String

which behaves in the following way: it takes a string as an input and returns the
string in which the lowercase vowels were removed. For example:

>ignore_lowerCaseVowels ”the cat who saw the moon.”
”th ct wh sw th mn.”
>ignore_lowerCaseVowels ”the cat who sAw the moon.”
”th ct wh sAw th mn.”

Hint: the functions pack and unpack from the standard library will be helpful. You
should use :doc to find out their types and how to use them. They are using the type
Char which represents strings of length 1 that has the following literal expression:
one character between single quotation marks, such as ’a’ or ’f’.

Challenge: Can you define the function using the following helper function: elem
: a -> List a -> Bool which returns True if an element is in a list and False
otherwise?

Task 5
Write the following functions using fold for Nat or fold for List:

• Rewrite the multiplication (lab 2) function for natural numbers:

mult’ : Nat -> Nat -> Nat
mult’ m = fold_nat ?n ?c

• Rewrite the functions n_to_lu and lu_to_n from lab 3, such that they define
a type isomorphism between the types Nat and List Unit. I.e., rewrite the
following:

– n_to_lu : Nat -> List Unit
n_to_lu = fold_nat ?n ?c

– lu_to_n : List Unit -> Nat
lu_to_n = fold_list ?n ?c

such that

>n_to_lu (lu_to_n [(), (), ()])
[(), (), ()]
>lu_to_n (n_to_lu 2)
2

2



Task 6
Write the fold function for the Bool type, fold_bool.

• First determine the type of this function using the algorithm described in the
lecture.

• Then write the function definition using the algorithm for that.

Up to argument order, you should recognize this function as a construct present in
nearly every programming language, what is it? Idris also supports the conventional
syntax for this construct, try it out.

3


