
Lab 5

Functional Programming (ITI0212)

2023-03-03

This week we saw programming interfaces. You may recognise them as typeclasses in
Haskell or abstract classes in Java. They are like a signature that defines a collection
of operations (or methods) that constrain the behaviour of certain generic types.

In this lab, we will practice how to write implementations for interfaces as well as
how to define our own interface.

Warm up
Recall the Shape type from Lab 2 with the following three constructors:

• IsoTriangle (for an isosceles triangle), taking 2 arguments that represent the
base and height, respectively.

• Rectangle taking 2 arguments representing the width and height, respectively.

• Circle which takes 1 argument representing the radius of a circle.

and the following signature:
data Shape : Type where

IsoTriangle : Double -> Double -> Shape
Rectangle : Double -> Double -> Shape
Circle : Double -> Shape

Task 1
Write a Show implementation for Shapes that outputs the following:
> show (IsoTriangle 3 4)
" Triangle with base 3.0 and height 4.0"
> show (Rectangle 2 3)
" Rectangle with width 2.0 and height 3.0"
> show (Circle 5)
" Circle with radius 5.0"

Comparing Lists
You have seen in the Lecture 5 that the default Eq implementation for Lists com-
pares them pointwise,that is, two lists are considered equal if they have the same
elements in the same order:

> the (List Nat) [1 ,2 ,3] == [3 ,2 ,1]
False
> the (List Nat) [1 ,2 ,3] == [1 ,2 ,3 ,3]
False
> the (List Nat) [1 ,2 ,3] == [1 ,2 ,3]
True

1

For the following task you will need to import Data.List by writing import Data.List
at the beginning of your file.

Task 2
Write a named Eq implementation for lists that compares them setwise:

implementation [setwise] Eq a => Eq (List a) where

that is, two lists should be considered equal if each element that occurs (at least once)
in one of the lists also occurs (at least once) in the other:

> (==) @{ setwise } [1 ,2 ,3] [3 ,2 ,1]
True
> (==) @{ setwise } [1 ,2 ,3] [1 ,2 ,3 ,3]
True
> (==) @{ setwise } [1 ,2 ,3] [1 ,2 ,4]
False

Hint 1: the following functions may be useful:

• elem : Eq a => a -> List a -> Bool

• all : (a -> Bool)-> List a -> Bool

Hint 2: You may want to use a higher order function that you have seen last week
or you may need to use the infix notation for calling Idris functions: (by surrounding
it with backticks). For example, if you define add as in Lecture 2 you can write
add 3 4 or 3 `add` 4.

Preorders
The Ord interface from the standard library allows us to implement total orders on
the values of a type: an implementation of Ord for a given type allows us to compare
any two values of that type.

A preorder is a more general order relation, which is simply a binary predicate ď,
having the properties of reflexivity (@x, x ď x) and transitivity (@xyz, x ď y ^ y ď

z ùñ x ď z).

Note that in a preorder not every two elements are comparable.

Later in the course we will see how to specify these properties in Idris, but for this
lab a preorder is just a binary predicate whose implementations we should manually
ensure to be reflexive and transitive.

For example, “divides” defines a preorder on the natural numbers: we write n ď m
for “n divides m”.

Task 3
This task has two parts. First, write an interface PreOrd for preorders. Think how
many methods you may need.

Then, write a named implementation, “divides” for PreOrd on Integer that outputs
whether “n divides m”. Convince yourself that your implementation is reflexive and
transitive.

Hint: you may find the mod function useful, where mod n m is the remainder when
dividing n by m.

2

Arithmetic Expressions
Task 4
Recall the type of arithmetic expressions from the lecture:

data AExpr : Num n => Type -> Type where
V : n -> AExpr n
Plus : AExpr n -> AExpr n -> AExpr n
Times : AExpr n -> AExpr n -> AExpr n

Write an Ord implementation for AExpr n that compares the values the arithmetic
expressions evaluate to.

Note: for this exercise, you will need to use the eval function introduced in the
lecture.

Your implementation should behave as follows:

> (V 2) < (V 3)
True
> (Plus (V 2) (V 1)) < (V 3)
False
> max (Plus (V 2) (V 4)) (V 3)
Plus (V 2) (V 4)

Hint: your implementation will need more than one constraint.

Cast
Task 5
Write an implementation of the Cast interface that casts a Bool to an Integer and
another implementation of the same interface that casts an Integer to a Bool.

Which of the two performs a lossy cast? Can you see why?

3

