
Lab 7

Functional Programming (ITI0212)

2023-03-17

This week we learned how to do monadic I/O in typed purely functional programming
languages. Unlike imperative programming languages these do not have a syntactic
class of statements. Instead, some expressions represent computations, which are in-
structions to the run-time system to perform various actions. These are distinguished
in the type system by being elements of IO types.

We can build up compound computations from simpler ones using two monadic com-
binators, pure : a -> IO a, which produces a trivial computation, and (>>=) : IO
a -> (a -> IO b)-> IO b, which sequences computations by running the first and
passing the resulting value to the next.

There is syntactic sugar called do-notation, in which a sequence of computations can
be written to resemble a block of statements in an imperative programming language.
This can be convenient, but it is important to understand that it is merely a syntactic
transformation: purely functional programming languages do not have statements.

Task 1
Write a computation,

concat_strings : IO String

which when run, it concatenates two strings. Write two implementations, one using
the do-notation and the other using the sequencing operator (>>=). For example,

Lab7 >: exec concat_strings >>= printLn
Please enter the first sentence :
Hello
Please enter the second sentence :
there!
"Hello there !"

Task 2
Write a function,

add_after : Integer -> IO (Maybe Integer )

, which takes an integer as an input, and returns a computation which when run asks
the user to input another number and adds them together. In case the user does not
provide a number, then the function should return Nothing. For example,

Lab7 >: exec add_after 10 >>= printLn
Please enter a number :
7
Just 17
Lab7 >: exec add_after 10 >>= printLn
Please enter a number :
no

1



Nothing

Task 3
Write a computation

count_words : IO Unit

which when run asks the user to enter some text on a line and prints on the terminal
the number of words that the user wrote. For example,

Lab7 >: exec count_words
Enter some text:
Hello world!
You typed 2 words.

Leb7 >: exec count_words
Enter some text:
Some numbers - 5, 3- and words separated by space.
You typed 9 words.

Hint: You can use the words function form Data.String.

Task 4
Write a computation,

get_lines : IO(List String )

that reads lines of user input until the user enters “done”, and returns the lines as a
List String. For example,

Lab7 >: exec get_lines >>= printLn
Please enter a sentence :
Some first sentence
Please enter a sentence :
Hello there
Please enter a sentence :
done
[" Some first sentence ", "Hello there "]

Task 5
Write a (similar) computation as the one before,

get_only_ints : IO (List Integer )

, which repeatedly asks the user to enter an integer until the user types “done” and
returns a list containing the integers that were given.

Lab7 >: exec get_only_ints >>= printLn
Please enter an integer or "done ":
4
Please enter an integer or "done ":
no
Please enter an integer or "done ":
6
Please enter an integer or "done ":
done should be the only word on a line to end this
Please enter an integer or "done ":
7

2



Please enter an integer or "done ":
done
[4, 6, 7]

Task 6
Warning: In this exercise you will use a function to write to a file. Please make sure
that you are not overwriting an important file on your computer!

Write a computation

dictate : IO ()

and compile it to obtain an executable (here also named dictate). When run, dictate
should read lines until the user enters “done”, then prompt the user for the name of a
file to store those lines in. A message relaying the success of failure of this operation
should be printed before the program exits. For example:

Lab7 >./ dictate
Please enter a sentence :
Hello!
Please enter a sentence :
I want to test this function .
Please enter a sentence :
done
Enter the location :
dictate .txt
Success !
>cat dictate .txt
Hello! I want to test this function .

Lab7 >./ dictate
Please enter a sentence :
Testing this
Please enter a sentence :
on a bad example .
Please enter a sentence :
done
Enter the location :
bad_directory / dictate .txt
Failed to write to file.

Note: You will need to import System.File.

Hint: You may want to use the get_lines function you defined before as well as the
unwords and writeFile functions.

3


