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This week we are learning about the propositions as types paradigm. It tells us that propositions
(the mathematical statements) are in fact the same things as types (the functional programming
objects). This is known as the Curry-Howard correspondence. When we have t : T, then it can
be read both as t is a term of type T and t is a proof of the proposition T. We see here that
terms becomes proofs, and constructing a term of a type (= proposition) is the exact same thing
as constructing a proof of this type (= proposition).

As a side note, you should add, before coding any functions, the following command to your script:
%default total. This will tell Idris that all the functions we are defining should be total. Indeed,
if it were not the case, we could perfectly well construct a partial function of some type, thus giving
a partial proof of a proposition.

A remark on implicit vs. explicit arguments
Often when we do theorem proving in functional programming, we like to leave arguments implicit
as much as possible. For instance, consider those two functions proving that <= is reflexive:
leReflExplicit : (n : Nat) -> n <= n
leReflExplicit 0 = LeZ
leReflExplicit (S k) = LeS ( leReflExplicit k)

and
leReflImplicit : {n : Nat} -> n <= n
leReflImplicit {n = 0} = LeZ
leReflImplicit {n = (S k)} = LeS leReflImplicit

In the explicit version, it is easier to write the function because the explicit argument automatically
appears in the body. In the implicit version, we have to tell Idris that we want to deal with the
implicit argument. The process generally goes as follow. First write the type of your function:
leReflImplicit : {n : Nat} -> n <= n

Then ask Idris (with the key-binding) to write the body of your function:
leReflImplicit : {n : Nat} -> n <= n
leReflImplicit = ? leReflImplicit_rhs

Here you notice that the n is not present in the body, so you cannot pattern-match on it. However,
you can manually add it like so:
leReflImplicit : {n : Nat} -> n <= n
leReflImplicit {n = n} = ? leReflImplicit_rhs

Notice that you could also have chosen to put {n = anotherNameForMyImplicitArgument}, it
doesn’t really matter. The important thing is that the left hand side of the = is the same as the
name of the implicit argument. Finally, you can ask Idris to pattern-match on it, as usual with
the key-binding:
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leReflImplicit : {n : Nat} -> n <= n
leReflImplicit {n = 0} = ? leReflImplicit_rhs_1
leReflImplicit {n = (S k)} = ? leReflImplicit_rhs_2

In the today’s lab, we made things easier and all the arguments are made explicit when there is a
need to pattern-match on them. However you should try to make them implicit, typically, for the
Task 3, you could adapt

leWeakRight : (m, n : Nat) -> m <= n -> m <= S n

as

leWeakRight ’ : {m, n : Nat} -> m <= n -> m <= S n

Warning: when you have implicit arguments that are not explicitly bound (i.e. between { }),
Idris will choose names for them, and unfortunately, it (often) chooses the same name for different
arguments making things confusing. To avoid this problem, do not hesitate to name your implicit
arguments anyway (e.g. {n = n}, {p = p}, etc.), even if you don’t pattern match on them. This
is typically what will happen in Task 1: if you don’t put names, then Idris will decide to name
both m and n as p, and name p as n, which is... kind of confusing.

Facts about less or equal
As a general hint for this section, do not forget that you can use previous result to prove new ones.
Recall the type ď from the lecture:

data (<=) : (p : Nat) -> (n : Nat) -> Type where
LeZ : 0 <= n
LeS : p <= n -> S p <= S n

Task 1
Prove that <= is transitive, that build a function of the following type:

leTrans : m <= n -> n <= p -> m <= p

Task 2
State and prove that any integer is less or equal than its successor.

Task 3
Prove the following:

leWeakRight : (m, n : Nat) -> m <= n -> m <= S n

and

leWeakLeft : (m, n : Nat) -> S m <= n -> m <= n

Hint: for leWeakLeft, if you are stuck, you can use leTrans.

Task 4
Prove the following:

zeroPlusRight : (m, n : Nat) -> m + 0 <= m + n

and

zeroPlusLeft : (m, n : Nat) -> 0 + n <= m + n
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Hint: for zeroplusLeft, if you are stuck, you can use leTrans.

Task 5
Prove the following:

succPlusRight : (m, n : Nat) -> m + n <= m + S n

and

succPlusLeft : (m, n : Nat) -> m + n <= S m + n

On the length of lists
Task 6
State and prove that if two lists xs, ys are such that length xs <= length ys, then length
(x :: xs) <= length (y :: ys).

Recall in the lecture how we define the IsPrefix proposition:

data IsPrefix : (xs : List a) -> (ys : List a) -> Type where
IsPrefixNil : IsPrefix [] ys
IsPrefixCons : IsPrefix xs ys -> IsPrefix (z::xs) (z::ys)

Task 7
State and prove that if a list xs is the prefix of a list ys, then the length of xs is smaller or equal
than the length of ys.

Optional tasks : Induction on lists
Recall from the lecture that the induction principle for natural numbers has the following type:

induction : (prop : Nat -> Type) ->
( base_case : prop 0) ->
( induction_step : (k : Nat) -> prop k -> prop (S k)) ->
(n : Nat) -> prop n

Task 8
Write the type of the induction principle for the type List a. Give a proof that it is true, that is,
write a function of the type you just wrote.

Task 9
State (using the type ď as above) that the length of a list length xs is always less or equal than
length (x :: xs). Now prove it using the induction principle you just defined.
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