
Homework 1
Functional Programming (ITI0212)

Deadline: Wednesday 12th March 2025

Task 1
The Ackermann function is a famously fast-growing (total, computable) function that
takes two natural numbers and returns a natural number, and is recursively defined by

ack m n “

$

’

&

’

%

n ` 1 if m “ 0
ack pm ´ 1q 1 if m ‰ 0 and n “ 0
ack pm ´ 1q pack m pn ´ 1qq otherwise

Write the Ackermann function in Lean using pattern matching. Your function should
be total (i.e. don’t use the partial keyword!). Confirm that it returns correct
results for some low argument values according to https://en.wikipedia.org/wiki/
Ackermann_function#Table_of_values.

Task 2
Write generic functions with each of the following types:

diag : α Ñ α ˆ α

anyway : α ‘ α Ñ α

assocr : pα ˆ βq ˆ γ Ñ α ˆ pβ ˆ γq

distrib : α ˆ pβ ‘ γq Ñ pα ˆ βq ‘ pα ˆ γq

Task 3
Write the generic function that consolidates a List of (Option α)s into an element
of Option (List α). It should return some (list) just in case the argument is a list of
somes. For example:

#eval consolidate []
=> some []
#eval consolidate [some 1 , some 2 , some 3]
=> some [1, 2, 3]
#eval consolidate [some "A", none , some "C"]
=> none

Task 4
Write a higher-order function that uses a given function to transform the element at
the specified index of a list:
transform : (f : α Ñ α) (i : Nat) (xs : List α) : List α

For example:
#eval transform S 0 [1, 2, 3]
=> [2, 2, 3]
#eval transform S 1 [1, 2, 3]

1

https://en.wikipedia.org/wiki/Ackermann_function#Table_of_values
https://en.wikipedia.org/wiki/Ackermann_function#Table_of_values


=> [1, 3, 3]
#eval transform S 2 [1, 2, 3]
=> [1, 2, 4]
#eval transform S 3 [1, 2, 3]
=> [1, 2, 3]

Task 5
Write a function that capitalizes the first character of each word of a string.

#eval titlecase "it was the best of times it was the
worst of times"

=> "It Was The Best Of Times It Was The Worst Of Times"

You may assume that the words are separated by whitespace. The following standard
library functions may be helpful:

• String.splitOn : String Ñ List String (with an optional third argument
giving the string to split on, which is a space by default)

• String.intercalate " " : List String Ñ String, which joins a list of
strings into a string by intercalating a space (note the partial application of
String.intercalate to " ", which is the string to intercalate).

• String.toList : String Ñ List Char

• List.asString : List Char Ñ String,

• Char.toUpper : Char Ñ Char.

Tip: Your function from task 4 may be helpful, as well as standard higher-order
functions like function composition (˝) and List.map.

Task 6
Recall the inductive type Tree from Lab 3. Write the fold function for Trees.

You will need to first work out what type this function should have. Recall that a fold
can be conceived of as replacing the element constructors of an inductive type with
functions and values, yielding a value of another type β.

To write the type of the fold function for an inductive type:

1. Examine the types of its element constructors, e.g.
[] : List α
(::) : α Ñ List α Ñ List α

2. In each constructor replace the type itself with a new type parameter, which
will be the return type, e.g.
n : β
c : α Ñ β Ñ β

3. The fold function has one argument for each constructor-replacing term and
return a function from the type being folded to the parameter type β:
fold_list : (c : α Ñ β Ñ β) Ñ (n : β) Ñ List α Ñ β

Task 7
Reimplement the size : Tree α Ñ Nat function from Lab 3 as a one-line function
using your fold function for Trees from Task 6.

Hint: you will need to use a function literal.

2


