
Homework 2
Functional Programming (ITI0212)

Deadline: Wednesday 9th April 2025

Task 1
A queue is a data structure with two “ends”. An empty queue contains no data. We
can define a typeclass Queue with operations for pushing an element (onto the back)
and for popping an element (from the front) in a first-in–first-out manner, and also a
field for the empty queue.

class Queue (t : Type -> Type) where
emp : t α
push : α Ñ t α Ñ t α
pop : t α Ñ Option (α ˆ t α)

A list can be used as a simple (if inefficient) form of queue. Write an implementation
of Queue for the List type constructor. The behaviour should be as follows, e.g.

#eval ((( Queue.push 3 ˝ Queue.push 2 ˝ Queue.push 1)
Queue.emp) : List Nat)

----> [1, 2, 3]
#eval Queue.pop [1, 2, 3]
----> some (1 , [2, 3])
#eval Queue.pop ([] : List Nat)
----> none

Task 2
Using either do notation or applicative style (pure and <*>), write a function

add3 (m n o : Option Nat) : Option Nat

that returns the sum of the three inputs when they all exist and none otherwise.

Task 3
A Mealy machine is a kind of state machine that, in a given state, can read an input,
which causes it to transition to a new state and omit an output. For example, a cipher
machine could be modelled as a Mealy machine.

Here is an example of a Mealy machine with three states:
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The labellings (in/out) of each arrow say what input must be received for the transition
to occur (left, red), and what is outputted when the transition occurs (right, blue).
For example, if the machine is in state Si and it receives 1 as an input, it will output
0 and move to state S1.

A Mealy machine with inputs of type α and outputs of type β is thus like a function
from α Ñ β that has some internal state of type σ. We can therefore represent it as a
function α Ñ StateM σ β.

Use the inductive type,
inductive MealyState
| Si : MealyState
| S0 : MealyState
| S1 : MealyState
deriving Repr

for the type of states of the machine above, and Bool for the type of the inputs and
outputs.

Write a function

mealy (input : Bool) : StateM MealyState Bool

which given an input and a state, returns the new state and the output, according to
the diagram above.

Recall that StateM MealyState Bool is defined to be the type

MealyState Ñ Bool ˆ MealyState,

so the function above really is a function of two arguments.

Task 4
Since Lean provides a (generic) instance of Monad for StateM σ, we can leverage
the generic function List.mapM to lift the function mealy from the previous task, to
a function taking a list of inputs and returning the corresponding list of outputs,
obtained by running the machine on the list of inputs, assuming that some state is
designated as the initial one that the machine starts in.

You should take Si as the initial state of the machine. Use List.mapM to write this
(one-line) function

run_mealy (inputs : List Bool) : List Bool

For example,
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#eval run_mealy [true]
----> [false]
#eval run_mealy [true , false , false , true]
----> [false , true , false , true]

Bonus: can you tell what function this Mealy machine is computing?

Hint: the output is a function of the previous two inputs.

Task 5
Write a function that takes either (‘) a computation that when run (possibly does
some IO) and returns an α or a computation that when run (possibly does some
IO) and returns a β, and returns a computation that when run, runs whichever
computation was given and produces the corresponding result:

sumIO : (IO α) ‘ (IO β) Ñ IO (α ‘ β)

Now write a function that takes both a computation that when run (possibly does
some IO) and returns an α and a computation that when run (possibly does some IO)
and returns a β, and returns a computation that when run, runs the two computations
in order and produces the product of their results:

bothIO : IO α ˆ IO β Ñ IO (α ˆ β)

This illustrates how values of type IO α can be passed to functions and manipulated
like values of any other type.

3


