
Lab 1: Installing and interacting with Lean

Functional Programming (ITI0212)

Task 1 (install Lean 4)
If you haven’t already done so, install Lean 4 on your computer. To be able to follow
the course, you must have a working Lean installation. You can also use the lab
computers, but you should boot the computer into Ubuntu.

The recommended method for all platforms is to first install vscode (already installed
on Lab computers) and then follow the instructions at https://docs.lean-lang.
org/lean4/doc/quickstart.html.

When prompted to create a new project, select Create a new standalone project,
and choose a directory called labs (you should use this project for all the labs, as
some labs may depend on earlier ones), then open the project when prompted.

Alternatively, you can install Lean 4 manually and also a package for your editor such
as lean.nvim or the Lean 4 mode for emacs.

The default project structure contains three .lean files:

• Main.lean

• [project-name].lean

• [project-name]/Basic.lean

.lean files define modules: the name of a module is the name of the file (without the
extension). By convention, modules are named using CamelCase, e.g. MyModule.lean.
In general, code should live in modules in the [project-name]/ directory (for example,
you should make a labs/Lab n.lean file for each lab). For simple programs you can
put code directly into Main.lean.

Task 2 (Building binaries)
We will mostly interact with Lean through the editor, but at some point we will want
to build executable binaries. To do this in vscode, use the Lean menu (@ symbol near
the top-right), select Project Actions... -> Project: Build Project.

In a console, navigate to your project directory and locate the build directory: on
unix systems this is inside the .lake hidden directory. Execute bin/[project-name].
You should see Hello, world!.

Task 3
Let’s try interacting with Lean through the editor. In Main.lean, try hovering over
terms such as Unit, IO.println, hello etc.

You should see the type of the term, e.g. hello : String, any provided documenta-
tion, and the module from which the term is imported. Make use of this feature to
remind yourself what things mean and where they come from!

Task 4
Since Lean is implemented in Lean, it is possible to view the definition of any expression.

1

https://docs.lean-lang.org/lean4/doc/quickstart.html
https://docs.lean-lang.org/lean4/doc/quickstart.html


Try right-clicking IO.println for example, and select Go to Definition. The editor
will jump to the module in Lean’s core where this function is defined. For some
expressions, such as def, you will need to first import the module Lean by adding
import Lean at the start of your file.

This feature is helpful not only for quickly locating our own definitions, but also for
looking under the hood of Lean’s standard library or indeed any other library that we
import.

Task 5
Lean also provides a number of commands, prefixed by #, which we can use to get
information interactively but which do not themselves form part of the program (they
are ignored by the compiler).

The #check command checks the type of an expression.

In a new module labs/Lab1.lean, add the line #check 1. In the Lean infoview
panel, you should see

1 : Nat

telling us that 1 is a Nat (a natural number).

If you cannot see the Lean infoview panel, use the command palette (ctrl+shift+p)
to open it using the Lean 4:Infoview:Display Goal command.

Task 6
The #eval command evaluates an expression.

Try something like #eval 1 + 2 – you should see the result 3.

These commands will be useful for quickly getting information about and testing
programs, or even just fragments of code.

Task 7
Now let’s write a simple program, to see some more interactive editing features.

Enter the following:

def average (x y : Nat) : Nat := ?goal

The expression ?goal is a hole, a placeholder for a term. We can write any name after
?, or simply ? . You can also use the expression sorry.

With your cursor on this line, in the Lean infoview panel, you should see

case goal

x y : Nat

$ Nat

This gives us information about the hole. The part x y : Nat before the turnstile
($) is called the context, it tells us what we have available to use at that point in the
program, in this case two variables x and y of type Nat. The part after the turnstile,
in this case Nat, is what we are trying to produce: we need to replace ?goal with a
term of type Nat, this is sometimes called the goal.

More generally, by placing your cursor at a point in a Lean program, the Lean
infoview panel should display the context and goal at that point.

2



Task 8
Since we have x y : Nat $ Nat, we can simply replace ?goal with x or y, and we will
have a well-typed program.

Try replacing ?goal with x, for instance. Lean will underline y and the info view will
note that y is not used. Unused variables may be replaced by an underscore.

Task 9
Obviously this function does not calculate the average of two natural numbers, so now
write the expression that does this.

Test your function using #eval. For example,

#eval average 2 4 should give 3 in the info panel.

3


