
Lab 2: Inductive types and recursive functions

Functional Programming (ITI0212)

This week we learned about inductive types and recursive functions. Inductive types
are specified by (element) constructors. These constructors define the possible ways of
creating elements of the given type, and each may take different numbers and types of
arguments. In particular, the type itself may be an input to one of its constructors.

Recursive functions on inductive types use case analysis or pattern matching in order
to specialize the function being defined for the possible element constructors. These
functions may call themselves using recursive calls to compute the result for the current
case using the results for other cases.

Task 1
An important function in digital circuit design is the xor function, which takes two
Bool inputs and returns true just in case they differ. Implement this function in Lean
by pattern matching on the input(s). Try implementing it with only three clauses.

Either write this function in a namespace Lab2, or call it xor’ to avoid a name
collision with Lean’s standard library.

Task 2
The two-element type Bool is used to represent the truth or falsity of a proposition.
But sometimes we are not so sure about things. Write a four-element type Prob with
elements name Definitely, Likely, Doubtful, and Impossible.

Task 3
Define a conjunction function and : Prob -> Prob -> Prob

according to the following table

Ó and Ñ Definitely Likely Doubtful Impossible
Definitely Definitely Likely Doubtful Impossible

Likely Likely Likely Doubtful Impossible
Doubtful Doubtful Doubtful Doubtful Impossible

Impossible Impossible Impossible Impossible Impossible

For example: #eval and Definitely Likely should evaluate to Likely.

Challenge: try to write this definition using as few clauses as possible (it should be
possible with six).

Task 4
The factorial function n! on the natural numbers can be characterized by the following
recursive specification:

n! :“
#

1 if n = 0
n ˆ pn ´ 1q! otherwise.

Turn this recursive mathematical specification into a recursive function definition in
Lean.
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Task 5
Define a multiplication function for the natural numbers by recursion over the inductive
structure of the type Nat (without using the * function from the standard library),

mul (n m : Nat) : Nat

Hint: try using recursion on the first argument.

Task 6
Let’s consider a type of arithmetic expressions, that we might use to implement a
calculator or simple programming language. An arithmetic expression is either a
natural number literal, a sum of a left and right expression, or a multiplication of a
left and a right expression.

This kind of definition is sometimes given in “Backus-Naur form” (BNF),

<AExp > ::= <nat > | <AExp > + <AExp > | <AExp > * <AExp >

a) Encode arithmetic expressions as inductive type AExp.

Elements of such types are sometimes called abstract syntax (representing in a struc-
tured way the concrete syntax specified by BNF, e.g. “(1+2)*3”).

b) Write a recursive function eval_math : AExpr Ñ Nat that evaluates an AExpr.

For example, eval_math (.Mul (.Sum (.Num 1)(.Num 2))(.Num 3)) should evalu-
ate to 9 “ pp1 ` 2q ˚ 3q.

You have just written an interpreter for this simple language of arithmetic expressions!

The syntax of Lean is given by an inductive type Expr. You can inspect this type by
importing the Lean module

import Lean

at the top of your file, then write

#check Lean.Expr

then right click on Lean.Expr and choose Go to definition...

It’s a bit more complicated than AExpr, and you won’t be expected to understand
everything here, but it’s fun to take a look under the hood :-)

Task 7
Inductive types with one constructor are structures, and Lean provides special syntax
for defining, instantiating and manipulating them. Here is a structure representing a
point in the plane by its x and y coordinates,

structure Point where
(x y : Float)

Recall that we can access the fields of a record using dot-syntax, e.g. myPoint.x, and
this also works for records that are fields of other records.

Define a structure called Segment that represents a line segment by its endpoints,
and then define a function length : Segment Ñ Float that calculates the length of
a Segment.

Hint: Float.sqrt takes square roots, and ˆ provides exponentiation.
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