
Lab 3: Parameterized types and generic functions

Functional Programming (ITI0212)

This week, we saw parameterized families of inductive types. These have types of
the form Type -> ... -> Type. Examples include List and Option, which take one
type parameter (Type -> Type), and Prod and Sum, which take two type parameters
(Type -> Type -> Type).

We also learned how to write generic functions, which act uniformly on the types of
such families. We saw how to use implicit arguments to avoid having to pass type
arguments explicitly.

Task 1
Define a function that swaps the elements of a pair:

swapPair : Prod α β Ñ Prod β α

You can insert Greek letters by typing e.g. \alpha. Recall that Lean automatically
inserts implicit arguments when it encounters unbound Greek or lowercase letters, so
the full type of swapPair is

swapProd : {α β : Type} Ñ Prod α β Ñ Prod β α

If you want to be fancy, you can use the infix notation α ˆ β for Prod α β, where ˆ

is inserted as \times.

Task 2
Define a function that swaps the left and right components of a Sum type:

swapSum : Sum α β Ñ Sum β α

Lean also defines the notation α ‘ β (α \oplus β) for Sum α β.

Question: Did you have any choice in how you defined the functions in Tasks 1 and 2?

Task 3
Define a recursive function that reverses a list:

reverseList : List α Ñ List α

For example:

• reverseList [] evalutes to []

• reverseList [1, 2, 3] evaluates to [3, 2, 1]

Use recursion and the list concatenation function:

List.append : List α Ñ List α Ñ List α

(which has infix notation ++).
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Task 4
The following (parameterized) inductive type defines node-labelled binary trees.

inductive Tree (α : Type) where
| leaf : Tree α
| node : Tree α -> α -> Tree α -> Tree α

That is, a tree with nodes labelled by α is either a leaf, or a node with a (left) tree
(with nodes labelled by α), a value of type α and a (right) tree (with nodes labelled
by alpha).

It is customary to draw trees as downward growing diagrams. For example, the term

.node (.node .leaf 1 (.node .leaf 3 .leaf)) 5 .leaf : Tree Nat

has a node with left branch (.node .leaf 1 (.node .leaf 3 .leaf)), label 5 and
right branch leaf, etc. we depict this as,

5
/ \

1 *
/ \
* 3

/ \
* *

where * stands for a leaf. Write a Lean term for t2 : Tree Nat representing this
tree:

4
/ \

2 6
/ \ / \

1 3 5 7
/ \ / \ / \ / \
* * * * * * * *

Task 5
Define a function that counts number the nodes in a tree:

size : Tree α Ñ Nat

For example: size t1 evaluates to 3, and size t2 evaluates to 7.

Task 6
A type isomorphism is a pair of “back-and-forth” functions between two types f : α
Ñ β and g : β Ñ α, such that if we apply either one to the result of applying the
other, then we get back the original argument; that is, for any x : α and y : β we
have that g (f x) evaluates to x and (f (g y)) evaluates to y.

Write a type isomorphism between the types Nat and List Unit:
n_to_lu : Nat Ñ List Unit
lu_to_n : List Unit Ñ Nat

They should satisfy, e.g.

• lu_to_n (n_to_lu 42) evaluates to 42

• n_to_lu (lu_to_n [(), (), ()]) evaluates to [(), (), ()]
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