Lab 4: Functional literals and higher-order functions

Functional Programming (ITI0212)

This week we learned about function literals and higher-order functions. Function
literals are free-standing expressions that represent values for the function types. We
can refer to the function with formal parameter x and body t using the fun keyword
fun x => t or the A notation Ax => t.

A higher-order function is a function that can take other functions as arguments and/or
return them as results. We saw how the map and filter functions for List types
allow us to perform tasks that would typically be done in imperative programming
languages using loops, and how the fold function for an inductive type allows us to
define other functions without using pattern matching or recursion.

Task 1

We have seen that functions in Lean are curried: technically, instead of functions with
multiple arguments, we have functions of single arguments that return functions. This
is useful because then we can partially apply functions.

A true “function of multiple arguments” can be represented as a function from an
(iterated) Prod type, e.g.

def add’ : Nat x Nat — Nat := fun (x,y) => x + y

In order to evaluate add’, we must provide both arguments (as a pair).
Write a (higher-order) function
curry (f : axf8—-o79) : a—>B—>7y

which transforms a function of two arguments into its curried form, and a function
uncurry (f:ra—B—7):axf oy

which transforms a curried function into a function of two arguments.

Task 2
Using List.foldr, write a function

andl : List Bool — Bool

which takes a list and returns the logical conjunction (Bool.and) of its members. The
conjunction of an empty list is true.

For example,

#eval andl [true, true, false]
=> false
#eval andl [true, true, truel]
=> true

Task 3
Using List.foldr, write a function



mull : List Nat — Nat

which takes a list of natural numbers and returns their product. You may assume that
mull [] evaluates to 1.

Task 4
Write a function that returns numbers in a list that are multiples of 10.

Hint: Use Nat.mod aka % to compute remainders upon division, and == to compare
numbers for equality.

Task 5
Write a function which behaves also follows: it takes a string as an input and returns
the string in which the lowercase vowels were removed. For example:

#eval ignore_lowerCaseVowels "the cat who saw the moon."
"th ¢t wh sw th mn."
#eval ignore_lowerCaseVowels "the cat who sAw the moon."
"th ct wh sAw th mn."

Hint: the functions List.asString and String.toList from the standard library
will be helpful, to convert strings to and from lists of characters.

Task 6
Write the fold function for the Bool type, fold_bool.

e First determine the type of this function using the algorithm described in the
lecture.

e Then write the function definition using the algorithm for that.

Up to argument order, you should recognize this function as a construct present in
nearly every programming language, what is it?



