
Lab 6: Functors, Applicatives, Monads

Functional Programming (ITI0212)

This week we saw some typeclasses that abstract useful functional programming
patterns. It will probably take some time to get used to these abstractions, and to
notice where they are occuring in your code.

Functors are type constructors t : Type Ñ Type supporting a notion of mapping, i.e.
implementing a function map : α Ñ β Ñ t α Ñ t β which must preserve function
composition and the identity function.

Applicatives are Functors which additionally supply functions pure : α Ñ tα and
seq : t (α Ñ β) Ñ t α Ñ t β, written infix as <*>. Applicatives abstract
function application to the context of some Functor.

Monads are Applicatives which supply bind : t α Ñ (α Ñ t β) Ñ t β, written
infix as >>=, which abstracts composition of ”effectful” computations (we will see more
on this next week).

Task 1
An homogeneous pair is an element of type α ˆ α.

We can introduce this as a definition,

def HPair (α : Type) : Type := α ˆ α.

Define an instance of Functor for HPair, and convince yourself that it satisfies the
two functor laws, i.e.

map id p = p
map (f ˝ g) p = map f (map g p).

Task 2
Write an instance of Functor for pα Ñ .q : Type Ñ Type. You will need to explicitly
add α as an (implicit) argument to the instance, i.e. instance {α : Type} ...

Hint: work out what the type of map is for this Functor, and consider how you can
use the arguments to produce the output.

Task 3
A Monoid is a type equipped with the extra structure given by (copy this definition
into your file),

class Monoid (α : Type) where
add : α Ñ α Ñ α
zero : α

These operations must satisfy the equations:

add zero x = x = add x zero (unitality)

and

add x (add y z) = add (add x y) z (associativity).
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Intuitively, a Monoid is a type equipped with some notion of combining any two
elements of the type, and with a “null” or “zero” or “empty” element.

Write instances of Monoid Nat and Monoid String and convince yourself that your
implementations of the operations satisfy the equations.

Task 4
Write a function that takes a list of elements from a Monoid α, and uses the Monoid
structure to accumulate the elements in the list into an α.

Task 5
Define a function:

liftA2 [Applicative t] (f : α Ñ β Ñ γ) (ta : t α) (tb : t β) : t γ

This function should behave like a generalized version of map, e.g. (you will need to
copy the definition of ‘instance : Applicative List’ from the lecture to evaluate this...)

liftA2 Nat.add [1,2] [3,4] should evaluate to [4,5,5,6] = [1+3,1+4,2+3,2+4].

Hint: use the fact that t is assumed to be an Applicative. Recall the types of pure
and seq. How can we use them to compute a t γ?

Task 6
Write an instance of Monad for Option.

Task 7
Copy the following division function that fails if the divisor is zero:

def safediv (n m : Nat) : Option Nat :=
if m == 0 then none else some (n / m)

Using safediv and the Monad instance for Option defined in the previous task, write
a function

divdiv (p q r: Nat): Option Nat

which returns (some) pp{qq{r if both q and r are non zero, and none otherwise. Your
answer should involve no pattern matching.
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