Lab 7: More monads - Purely functional 10, State etc.

Functional Programming (ITI0212)

This week we looked more at monads. Monad is a typeclass whose instances allow us
to write programs with “effects” such as 10, non-determinism, exceptions, etc.

Unlike imperative languages, Lean 4 does not have a syntactic class of statements, but
do-notation allows us to write imperative style code.

Task 1
Write an expression main : I0 Unit, which reads a line of user input and prints the
number of words.

To test your function, navigate to the directory of your lab file and run lean --run
Lab7.lean

Enter a sentence: Hello world!
Sentence contains 2 words.

Task 2

Let t be a Monad. Write a generic function which takes two functions f:a — t
and g: B — t v and returns a function @ — t «y. There is essentially one way to do
this, using the bind (>>=) of t.

This operation is known as Kleisli composition: it is a canonical way of composing
functions whose outputs are in some Monad. Lean provides the infix notation >=> for
Kleisli composition.

Notice the resemblance between your answer and the definition of function composition,
Function.comp.

Bonus: given a function >=>, can you define a function >>=7

Task 3
For any Monad t, there is an essentially unique way to define a function

t(ta) —>ta

Write a generic implementation of this function, parameterized by [Monad t], and
call it join. What does join do when t is the List monad? Recall that

instance : Monad List where
pure x := [x]
bind xs f := List.flatten (Functor.map f xs)

(this instance not provided by Lean).
Hint: you will need to make use of the generic identity function id : 8 — 3.

Fact: conversely, given a Functor equipped with a function t (t @) — t a«,itis
possible to define >>=.



Task 4
For this task, you will need to make sure you have copied the instance of Monad List
from Task 3 into your file.

Write a function binaryLists (n : Nat) : List (List Nat) that for a given n
produces a list of all the lists of length n whose entries are either 0 or 1.

You should write this in monadic style, with do-notation, i.e. use the fact that List is
a Monad. You will need to use recursion, so think about how binaryLists of length n
+ 1 can be built from binaryLists of length n.

For example, binaryLists O evaluates to [[1].
binaryLists 2 evaluates to [[0,0],[1,0],[0,1],[1,1]1] (or in some other order).

Hint: while you build intuition for the List monad, you may wish to first write the
function using List.flatten and Functor.map, and then notice how to replace this
with monad structure.

Task 5
Write a function,

addI0 : I0 (Option Imnt)

which takes asks the user to enter a number, twice. If the inputs are valid integers,
return their sum wrapped in some. Otherwise, return none.

Note that the getLine function will include the return character, thus you will probably
need to use String.trim. You can use String.toInt? : String — Option Int
to convert strings to integers.

To test your function, define the following

def main : IO Unit := do
let stdout <- IO.getStdout
let add <- addIO
stdout.putStrLn s!"{add}"

In a terminal, navigate to the directory of your lab file, and run lean --run Lab7.lean,
which executes the main function.

Example:

[y
~

Please enter number
Please enter number 2: 10
some 17

Please enter number 10
Please enter number 2: no
none

(=Y



