
Lab 8: Indexed types and dependent functions

Functional Programming (ITI0212)

This week we are learning about indexed type families and dependent functions.
An indexed type family (or “indexed type” or “dependent type (family)”) is a type
constructor where the resulting types are indexed by (or “depend on”) elements of
another type.

We met the finite types Fin n, whose elements are finite prefixes of the natural numbers
bounded by n. We also met the vector types Vect α n, whose elements are length n
sequences of αs. Both of these are indexed by the type Nat. We also saw how the
dependent pair types Sigma a b generalize the ordinary pair types Prod a b, in that
the type of the second factor is indexed by the first factor.

A dependent function is one where the type of the result can depend on not only
the type, but also the value, of the argument. The type constructor for dependent
functions is built into Lean and is what makes its type system so expressive.

Task 1
Write a type isomorphism between the types Bool and Fin 2, so that:
(fin_2_bool ˝ bool_2_fin) true
true : Bool
(fin_2_bool ˝ bool_2_fin) false
false : Bool
(bool_2_fin ˝ fin_2_bool) 0
0 : Fin 2
(bool_2_fin ˝ fin_2_bool) 1
1 : Fin 2

Remember that ˝ is function composition. Question: how many isomorphisms are
there between these two types?

Task 2
Let’s practise writing some functions for the Vect type we have defined in the lecture:

inductive Vect (α : Type) : (n : Nat) Ñ Type where
| nil : Vect α 0
| cons : α Ñ Vect α n Ñ Vect α (n + 1)

First, write the map function for vectors. If you’re stuck, look at the definition of map
for Lists.

Now, write the unzip function for vectors which splits a Vect of pairs into a pair of
Vects. Hint: the type signature of this function: Vect α ˆ β n Ñ Vect α n ˆ

Vect β n.

Finally, write the reverse function for vectors. Hint: you need a helper function which
appends an element to the end of a vector, typically called snoc (cons read backwards).

Task 3
Write the following function, which returns the element of a finite type having the

1



same “size” as its argument, and that is the “largest” element of its type: Note that
this is a dependent function because the result type depends on the argument value.

For example:

as_top 0
0 : Fin 1
as_top 1
1 : Fin 2
as_top 2
2 : Fin 3

Task 4
Write a function ind_pair that converts a Prod into a Sigma with the same elements
in the same order.

For example:

ind_pair ("hello" , 42)
x "hello", 42 y

ind_pair (true , ())
x true , () y

Task 5
List types and Vect types are both finite sequence types, made from constructors
called nil and cons, and informally, we can think of a Vect as a List that knows its
length.

Forgetting things is usually pretty easy. Write a function that converts a Vect into
the List containing the same elements in the same order.

Learning things is often a little harder than forgetting them. Write a function that
converts a List into the Vect containing the same elements in the same order.

Hint: learn_length will need to be a dependent function because the result type
depends on the argument value.

2


