Lab 10: Propositions as types

Functional Programming (ITI0212)

This week we are learning about the *propositions as types* paradigm. It tells us that propositions (the mathematical statements) are in fact the same things as types (the functional programming objects). This is known as the Curry-Howard correspondence. When we have t : T, then it can be read both as t is a term of type T and t is a proof of the proposition T. We see here that terms becomes proofs, and constructing a term of a type (= proposition) is the exact same thing as constructing a proof of this type (= proposition).

Facts about less or equal

As a general hint for this section, do not forget that you can use previous result to prove new ones. Recall the type \leq' from the lecture:

Task 1

Prove that \leq' is transitive, which means you need to give a function of the following type: leTrans : {m n p : Nat} \rightarrow (m \leq' n) \rightarrow (n \leq' p) \rightarrow (m \leq' p)

Task 2

State and prove that any integer is less or equal than its successor. This will be the function of the following type : succLarger : $\{n : Nat\} \rightarrow n \leq '(n + 1)$

Task 3

Prove the following : leWeakRight : {m n : Nat} \rightarrow (m \leq ' n) \rightarrow m \leq ' (n + 1) and leWeakLeft : {m n : Nat} \rightarrow ((m + 1) \leq ' n) \rightarrow (m \leq ' n)

Task 4

Prove the following: zeroPlusLeft : {m n : Nat} \rightarrow (0 + n) \leq m + n

On the length of lists

Task 5

State and prove that if two lists xs, ys are such that length xs \leq' length ys, then length (x :: xs) \leq' length (y :: ys).