
Lab 10: Propositions as types

Functional Programming (ITI0212)

This week we are learning about the propositions as types paradigm. It tells us that
propositions (the mathematical statements) are in fact the same things as types (the
functional programming objects). This is known as the Curry-Howard correspondence.
When we have t : T, then it can be read both as t is a term of type T and t is a
proof of the proposition T. We see here that terms becomes proofs, and constructing a
term of a type (= proposition) is the exact same thing as constructing a proof of this
type (= proposition).

Facts about less or equal
As a general hint for this section, do not forget that you can use previous result to
prove new ones. Recall the type ď1 from the lecture:

Task 1
Prove that ď1 is transitive, which means you need to give a function of the following
type: leTrans : tm n p : Natu Ñ (m ď1 n) Ñ (n ď1 p) Ñ (m ď1 p)

Task 2
State and prove that any integer is less or equal than its successor. This will be the
function of the following type : succLarger : tn : Natu Ñ n ď1 (n + 1)

Task 3
Prove the following : leWeakRight : tm n : Natu Ñ (m ď1 n) Ñ m ď1 (n + 1)
and leWeakLeft : tm n : Natu Ñ ((m + 1) ď1 n) Ñ (m ď1 n)

Task 4
Prove the following: zeroPlusLeft : tm n : Natu Ñ (0 + n) ď1 m + n

On the length of lists
Task 5
State and prove that if two lists xs, ys are such that length xs ď1 length ys, then
length (x :: xs) ď1 length (y :: ys).

1

https://en.wikipedia.org/wiki/Curry%E2%80%93Howard_correspondence

