Lab 11: First-order logic with types

Functional Programming (ITI0212)

This week we saw how to encode first-order logic in Lean, including logical implication,
conjunction, disjunction, negation, and existential and universal quantifiers.

Task 1
Write proofs of the following propositions:

e example : (P A Q) < (Q A P) (conjunction is commutative)
e example : (P - Q) — (= Q@ — — P) (contraposition).
e example (p : @« — Prop) : (3 x, px) »>— (Vx, - p x)
Hint: to access the components of an existential proposition h, you can write

let (a, b) := hin your function, or you can write have instead of let.

Task 2

In classical logic, if a proposition is not false, then it is true, that is, —— P — P is
true for all propositions P. This corresponds to the principle of “proof by contradiction”
whereby if we assume — P and reach a contradiction, we are allowed to conclude P.

This does not hold for a general proposition in Lean, because the logic of Lean is
constructive by default. Thus to prove P we really need to construct an element of P
and there is no general way of doing this from an element of —— P.

This is a bit like how, in everyday life, “it’s not not going to rain” doesn’t mean it is
going to rain, or “he’s not lying...” doesn’t imply that the truth was told.

On the other hand, —— P — P is not false in Lean, because for some propositions it
does hold. Prove that,

¢ —— False — False,
¢ —— True — True.
¢ —— isEven 1 — isEven 1

Hint: prove — isEven 1 first, and give the proof a name (using def or theorem
instead of example), so that you can re-use it.

Task 3

In classical logic, for every proposition P, the proposition P v — P is true. That is,
for every proposition P, either P or its negation holds. This is called the law of the
excluded middle or tertium non datur.

Again, in the constructive logic of Lean, this law does not hold in general. P v — P
is true in Lean just when we can construct a proof of P or a proof of — P. But some
propositions are open questions, for which we cannot (yet) provide either! Constructive
logic eschews the Platonic realm in which every proposition has a definite truth value
even when that value is not known to mortals (or the computer).

Prove that if excluded middle holds then double negation elimination holds. That is,
prove (P v = P) —» (—— P — P).

