
Lab 12: Inductive equality

Functional Programming (ITI0212)

This week we saw how to represent equality as a dependent type. For any two elements
of the same type, x y : α, we have a type x = y : Prop.

There is an element h : x = y just when x and y are equal, either by definition or
by manipulating x and y until they are definitionally equal. Definitional equality is the
equality that can be automatically checked by reducing expressions to their normal
forms. Functions for manipulating equations are based on the eliminator for equality,
which captures the principle of substitution.

Task 1
Equality is sometimes axiomatized as the “least equivalence relation” (on a type).

A relation R on a type α is a type constructor R : α Ñ α Ñ Prop. Eq is certainly
one of these.

An equivalence relation is a relation which satisfies:

• @ a, R a a (reflexivity)

• @ a b, R a b Ø R b a (symmetry)

• @ a b c, R a b ^ R b c Ñ R a c (transitivity)

The definition of equality as an inductive type does not ask for these properties: they
are theorems that we can deduce from the definition.

In the lecture we proved the symmetry property.

1. Prove that = is reflexive.

2. Prove that = is transitive.

Hint: try pattern matching on equality, or using Eq.subst (which itself pattern
matches on an equality).

Task 2
To say that = is the least equivalence relation means that for any other equivalence
relation R, we have a = b Ñ R a b.

Prove the statement:

least_equiv (R : α Ñ α Ñ Prop) (h : Equivalence R) : a = b Ñ R a b

Task 3
Let’s prove some equalities of types. Prove that:

• Vector α (1 + 2) = Vector α (2 + 1),

• Vector α (n + m) = Vector α (m + n).

Hint: you can make use of Nat.add_comm.

If you have an equality of types, you can use cast to convert values of one type to
values of the other.

1


