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On the sheaf of possible worlds 

J. Lambek, McGill University, Montreal! 

ABSTRACT. We define the spectrum of an intuitionistic type theory L£: its points are 

the saturated prime filters of £L(V), V being a set of variables containing sufficiently 

many variables of each type A such that F 34T, and its basic open sets have the form 

V(p) = {P € Spec L | p € P}, where p ranges over the closed formulas of £. The topos 

generated by £(V') is the topos of continuous global sections of a sheaf of “model” toposes, 

resernbling Henkin’s non-standard models of £. When £ is “non-constructive”, £(V') may 

be replaced by the “Hilbert-Bernays completion” of L, essentially obtained from L by 

adjoining an indefinite article, whose prime filters are already saturated. 

0. Introduction. 

The worlds of the title are of course mathematical worlds, inhabited by numbers 

and functions, not by cabbages and kings. To be precise, they are elementary toposes, 

in the sense of Lawvere [1972] and Tierney [1972], which resemble the category of sets, 

intuitionistic analogues of Henkin’s [1950] non-standard models. 

Before becoming more technical, let me give some historical background. Sheaf repre- 

sentations have been most successful in the theory of commutative rings. Classical results, 

due to Pierce [1967] and Grothendieck [1960], assert that every commutative regular ring 

is the ring of continuous sections of a sheaf of fields and, more generally, that every com- 

mutative ring is the ring of sections of a sheaf of local rings. The base space of this sheaf 

is the set of prime ideals, the so-called spectrum Spec R of the ring R, endowed with the 

Stone-Zariski topology: basic open sets have the form 

V(r)={P € Spec R|r ¢ P}, 
  

1This research has been supported by the Engineering and Natural Sciences Research 

Council of Canada.
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where r is any element of R. When R is a regular ring, this can also be written 

V(s) = {P € Spec R|s € P}, 

for any element s of R, in view of the identity (1 —r'r) = 0. Numerous attempts to extend 

this theorem to non- commutative rings have not so far resulted in general agreement. 

About eight years ago [1981] I realized that there was a corresponding theorem for 

elementary toposes. The points of the spectrum Spec 7 of a topos 7 were the prime filters 

of the Heyting algebra consisting of all arrows p: 1 — Q1in 7, {2 being the usual subobject 

classifier. As basic open sets I took 

V(p) = {P € SpecT |p¢ P} 

in what I believed to be the correct analogy to rings. However, Ieke Moerdijk, then a 

student at Amsterdam, persuaded me that a more elegant result could be obtained by 

taking basic open sets 

V(p) = {P € Spec T | p € P}. 

The only drawback of our result [1982] was the fact that the stalks of the sheaf fell 

short of being the models logicians would have been interested in. It is the purpose of this 

paper to remedy this. 

I wish to take this opportunity to thank Aurelio Carboni for insisting that the stalks of 

the sheaf should be models. In fact, he has proved such a sheaf representation himself, by 

completely different methods, without however being sure that his spectrum is a topological 

space. I also wish to thank Michael Barr and Phil Scott for helpful conversations and the 

mathematicians of Prague for inviting me to present this work in their beautiful city. 

1. Logical and categorical prerequisites. 

Let me begin by sketching a modern presentation of type theories; for more details 

the reader is referred to the book written in collaboration with Phil Scott [1986]. 

A type theory L consists of types, terms and a deduction relation. We require basic 

types 1, and N and allow the formation of types A x B and PA from given types A and 

B. We admit countably many variables of each type, in addition to which we insist on the 

following terms: 

1 2 N Ax B PA 
*x a=a 0 <a,b> {z € Alp(z)}
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Here it is understood that a and o' are given terms of type A, a of type PA, n of type 

N, bof type B and ¢(z) of type (2, the last exhibiting the variable z of type A for purpose 

of substitution. There is also a deduction symbol Fx, X being a finite set of variables, 

allowing one to write deductions of the form 

P1,---Pn FX Pnt1, 

where X contains all the variables occurring freely in the p;, which are assumed to be 

terms of type §2, also called “formulas”. Concerning such deductions, one postulates a 

number of obvious axioms and rules of inference, for example: 

pkx g 
P }_X u{y} q, 

p(z) Fz} 9(S7) 
p(0) bz} o(z) 

where z is a variable of type N. For a complete set of axioms and rules of inference the 

P*‘XP, 

  <ab>=<c,d>x a=c, 

reader is referred to our book. 

Logical symbols are defined as follows: 

T =% = *, 

PAG=<p,g>=<T,T >, 

p=q¢=(pAg)=p 

Veead(z)={z € A 4(z)} = {z € 4| T}. 
It 1s well-known how other symbols may be defined in terms of the above, thus 

1l,-p, pVyg, azf'EA&fi(-T), B!IEAQS(:B)? {a}a a C alv a x f, 

and so on. The reader is warned however that our system is intuitionistic, thus p V q¢ and 

d:ead(z) are not defined by De Morgan’s Rule but as follows: 

pVa=Vea((lp = y) A (g = y)) = ), 

3:EA¢(1‘) = Yyea(Vzealo(z) = y) = y). 

All the usual theorems of intuitionistic higher order logic are obtainable in such a lan- 

guage, which is moreover adequate for intuitionistic arithmetic and analysis. If a classical 

treatment is required, one merely has to adjoin Aristotle’s axiom 

F V,EQ(:: VvV '—JJ)
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and perhaps some type-theoretic equivalent of the axiom of choice. 

By a topos we shall here understand an elementary topos in the sense of Lawvere and 

Tierney: a cartesian closed category with a subobject classifier {2 and a natural numbers 

object N. With any topos T there is associated a type theory L(7T), its tnternal language. 

The types of this language are the objects of T and the closed terms of type A are arrows 

1 — A, 1 being the terminal object. Conversely, with any type theory £ there is associated 

a topos T(L), the topos generated by L. Its objects are closed terms a of type PA in L, 

where A is any type, and arrows e — 3, S being of type PB, are given by their graphs, 

namely provably functional relations, that is, closed terms p of type P(A x B) such that 

in L: 

FpCaxf A Viealz € a= 3lyep < z,y >€ p). 

It turns out that every topos is equivalent, as a category, to the topos generated by its 

internal language: 7 ~ T(L(7)). In particular, it can be assumed without loss in generality 

that toposes have “canonical subobjects”. One could also ensure that £ ~ L(T(L)), if 

one adopted a suitably sophisticated definition of ‘morphisms in the “meta-category” of 

type theories. However, we shall take as morphisms quite naively translations, which are 

assumed to send types to types and terms to terms. As morphisms in the meta-category 

of toposes one takes logical functors, which preserve the logical structure, and which here 

are also assumed to preserve canonical subobjects. One then finds that T and L become 

adjoint functors between the meta- category of toposes (with canonical subobjects) and 

logical functors and the meta-category of type theories and translations. In particular, 

one has a one-to-one correspondence between translations £ — L(7T) and logical functors 

T(L) — T, either of which may be read as an interpretation of £ in 7. 

While, in some sense, every such topos 7 may be regarded as a model of £, one is 

really interested in those toposes M which resemble the category of sets inasmuch as L(M) 

has the following three properties: 

(C) not  L; (Consistency) 

(DP)if-pVqgthenk port g; (Disjunction Property) 

(EP) if F J:eapp(z) then | p(a) for some closed term a of type A. (FEzistence Property) 

Under these conditions M will be called a model topos. If M satisfies- merely (C) and 

(DP), it has been called a local topos. The three properties can be translated into algebraic 

properties of the terminal object 1, as was first pointed out by Peter Freyd.:
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(C) 1 is not initial, 

(DP) 1 is indecomposable, 

(EP) 1 is projective. 

Properties of the functor Hom(1l,—) from M into the category of sets show that M is 

essentially what Henkin calls a non-standard model, at least in the Boolean case, where 1t 

is faithful; in fact, this functor preserves finite limits (up to isomorphism), finite coproducts 

(ditto) and epimorphisms. 

We should say a word about the translation n, £ — LT(L), which constitutes 

part of the data making T left adjoint to L. To each type A of L it associates the type 

A= {z € A| T}of LT(L) and to each closed term a of type A4 in L it associates the closed 

term a of type A in LT(L), namely the arrow a : 1 — A in T(L) whose graph is the term 

{< *,a >} of type P(1 x A). It has been shown [Lambek and Scott 1986, 11§14, 3] that 

nc induces a biunique correspondence between equivalence classes of closed terms of type 

PA in L module provable equality and closed terms of type PA in LT(L), in particular, 

that nc is a conservative extension. Moreover [ibidem II §14.8}, any type a of LT(L) is an 

object of T(L), hence a closed term of type PA in L, thus a subtypeof A= {z € A | T}, 

and we may identify {z € a | ¢(z)} with {z € A |z € aAp(z)} in LT(L), hence J;¢qp(z) 

with Jzea(z € a A ¢(2)). 

2. Sheaf representation under Hilbert’s Rule. 

Given a type theory £ and a filter F of closed formulas (terms of type ), one may 

obtain a type theory L£/F; its types and terms are the same as those of £, but there is a 

new deduction relation, inasmuch as the formulas in F are counted as assumptions. Thus 

ptqin L/F means f, pt q for some f € F. 

Let us now recall the main result of Lambek and Moerdijk [1982]. Given a type 

theory L, we consider the Heyting algebra of all closed formulas in £. The topological 

space Spec L has as points the prime filters of the Heyting algebra and as basic open sets 

the sets 

V(p) = {P € Spec L|pe€ P}, 

p being any closed formula. These basic open sets are compact. With each V(p) one asso- 

ciates the topos T'(L/(p)), where (p) is the principal filter generated by p, thus obtaining 

a presheaf of toposes. This presheaf turns out to be a sheaf, whose stalks are the local 

toposes T'(L/P). In particular, T(L) ~ T(L/(T)) is the topos of global sections of a sheaf 

of local toposes.
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It has already been pointed out [Lambek and Scott 1986, II §17] that the stalks 

are model toposes if L satisfies the Rule of Choice, equivalently, if all objects of T'(L) 

are projective. Actually, this is true more generally when L satisfies what we shall call 

Hilbert’s Rule: 

(H) For any type A such that - 3;e4T, if @ is a closed term of type PA, then there 

is a closed term e, of type A such that J;eqz €Eal e, € a. 

If a={z € A|yp(z)}, Hilbert would write eo = ezcap(z). Note that the hypothesis 

F 3zeaT is necessary in the type- theoretic version of Hilbert’s Rule, because the conclusion 

implies that I 3;e4(z € @ = e, € «), from which it follows that - 3,4 T. Alternative 

formulations of Hilbert’s Rule will be discussed below. 

Incidentally, the assumption - 3:¢4 T happens to be true for all types in pure type 

theory, where types are defined inductively; but, in the internal language of a topos, it 

asserts that the arrow A — 1 is an epimorphism, which fails to be so, for example, when 

A is a proper subobject of 1. 

PROPOSITION 2.1 Let £ be a type theory satisfying Hilbert’s Rule (H). Then, for any 

filter F, 1 is projective in T(£/F). In particular, for any prime filter P, T(L/P) is a model 

topos, hence T'(L) is the topos of continuous global sections of a sheaf of model toposes. 

PROOF. We wish to prove that LT(L/F) has the existence property. In view of Lemma 

2.2 below, it suffices to prove that £/F has the existence property for all types of the form 

A = PB, for which F J;¢4T holds trivially. 

Suppose then that « is a closed term of type PA such that A= PB and F J;e4z € a 

in L/F, then-f F 3;e4z € a in L for some element f of F. By Hilbert’s Rule we obtain 

flF ey €ain £, hence - e, € a in L/F. The proof is now complete, except for the 

following: 

LEMMA 2.2. If £ has the existence property for all types A = PB, then LT(L) has the 

existence property for all types whatsoever, that is, the terminal object is projective in 

T(L). 

PROOF. First, consider an existential statement in LT(L) of the special form |- 3, ¢4z € g, 

where a is a closed term of type A = PBin £, A = ncA and a = nca. Since nc is a 

conservative extension, - dze4z € a in L.
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Since £ is assumed to have the existence property for A = PB, there is a closed term 

a of type A such that F @ € @ in £, hence I @ € @ in LT(L). 

Now consider an arbitrary existential statement in LT(L), say - Jyegp(y), where § is 

a type in LT(L) which started life as a closed term of type PB in L. As remarked at the 

end of Section 1, this may be written - Jyep(y € BAw(y)). Now {y € B |y € BAp(y)} is 

a closed term of type PB and so, by the properties of 1, discussed at the end of Section 

1, it has the form §' = n8'. Our existential statement may now be written - J,cpy € §' 

Equivalently, 

F3:epp (singz Az C fl_’), 

where sing z = 3lyepy € z. Take @ = {z € PB | sing £ Az C '}, then we have 

F 3zeaz € a. In view of the special case of the lemma already established, there is a 

closed term a of type A such that - a € a. Thus I sing a and I a C 8’ in LT(L). As this 

is the internal language of a topos, there is a closed term b of type B such that - a = {b} 

and therefore - b € §’. Note that we are not claiming that b has the form 7.5 for some 

closed term b of type B in L. Anyway, b witnesses the existential statement - 3yepy € §' 

and our proof is complete. 

The proof depended on the following well-known fact, a proof of which is included for 

the reader’s convenience. 

LEMMA 2.3. Suppose |- 3l,epy € B in the internal language of a topos 7, where §:1 — 

PB. Then there is a unique arrow b:1 — B so that - € 8. 

PROOF. Let tg : B — PB be the singleton morphism. Thus we are given - 3,¢p(tgy = B). 

Since ig is a monomorphism, let h : PB — (2 be its characteristic morphism, so ¢ is the 

pullback of T 1 — Q along h. In particular, htg. = .Topg, where . = denotes “external” 

equality, and so F 3yep(T = hf). Therefore F T = hf and so k5. = T By the pullback 

property, there is a unique arrow b: 1 — B such that tgb. = .8, that is, F {8} = 3, that 

is, F b € B3, as was to be proved. 

Let us take a closer look at Hilbert’s Rule. It is clearly equivalent to the conjunction 

of the following two properties, assumed to hold for all types A and all closed terms « of 

type A: 

(EP)if F 3;eaz € a then |- a € o for some closed term a of type A, 

(NC)if F 3;eaT then F J;ea(dzeaz € a = € ).
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(EP) is what we had called the “existence property”. The non-constructive property (NC) 

is a consequence of the Aristotelian axiom F V eq(z V —2) and thus holds in any classical 

type theory. It is not acceptable to constructivists; as my be seen by taking A = P(PN) 

and a the set of non-principal ultrafilters in PN. 

(NC) may be strengthened to the following assertion called independence of premises, 

which is still a consequence of Hilbert’s Rule (H). 

(IP) for any closed formula p and any closed term o« of type PA, if F p = 3;ca7 € @ 

and F 3;ea4T, then F 3,c4(p = z € a). 

Clearly, (NC) may be obtained from (IP) by taking p = 3:e4z € @. On the other 

hand, to derive (IP) from Hilbert's Rule, assume F Jd;e4T and - p = 3;e47 € a; then 

I p = eq € a by (H), hence F 3¢ a(p = z € a) by existential generalization. Thus (H) is 

also equivalent to the conjunction of (EP) and (IP). 

If £ = L(T) is the internal language of a topos 7, Hilbert’s Rule for £ is equivalent to 

saying that in 7 all subobjects of 1 are projective. Johnstone [1977, §5.2] lists as examples 

of such toposes all functor categories Sets ?, where P is any well-ordered set, and points 

out that these do not necessarily satisfy the Rule of Choice. They are usually not even 

Boolean. 

3. Sheaf representation for non-constructive type theories. 

In this section we shall ask: if £ satisfies (NC), how close is it to satisfying Hilbert’s 

Rule? The following proposition will imply that some conservative extension of £ satisfies 

Hilbert’s Rule (H). 

PROPOSITION 3.1. Every type theory £ has a conservative extension £B its Hilbert- 

Bernays completion, with the existence property, that is, the terminal object of £B is 

projective. 

PROOF. The argument is inspired by Hilbert-Bernays-[1934, 1939]. 

First note that, from a type theory £ and a given type A, we can form a new type 

theory £(z), where z is a variable of type A. Just count all open terms of £ which contain 

no free variables except r as closed terms of -L(z). 

We remark that £(z) is a conservative extension of £ if and only if F 32T in L. 

For clearly F3,e4(z = z) in £(z) and, for any closed formula p of L, if F p in £(z), then 

T =z by} p, hence Izea(z =z)F pin L.



If £ is the internal language of a topos T, T'(L(z)) is equivalent to the so-called “slice” 

topos T /A, whose objects are arrows B — A, B being any object of 7. Similarly we can 

form £(X), where X is any set of variables. 

Given a type A in L, let X 4 be a set of variables containing exactly one variable z, of 

type A for each closed term « of type PA such that b ;a7 € ain L. Let F4 be the filter 

generated in £(X4) by all formulas z, € a. Let X be the union of all X4 and F' the filter 

generated by the union of all Fi4, A ranging over all types of L. Put BL = L(X)/F, B 

for “Bernays” We claim that BL is a conservative extension of L. 

For suppose p is a closed formula of £ so that - pin BL. Then p € F' in £L(X), hence 

Tay € Q1,--3Ta, €EQn Pz, .. za.} P- 

Therefore, by existential specification, 

d;e4,Z € @1,...,3z€4,T € an P, 

hence F pin L. 

Now consider the ascending chain 

LCBLC B*LC...... 

and form B®L = U_neN-BnL' Then B L is a conservative extension of £ and it has the 

existence property. For, if - 3:¢47 € a in B?°L, then this is so in B"L for some n, hence 

F T4 € o in B®"*1L and therefore in BL. The proof is now complete. 

We shall call £LB = BL the Hilbert-Bernays completion of L, even though there are 

some technical differences between their construction and ours. 

If a = {z € A| p(z)} is such that F I;eap(z), Hilbert and Bernays stipulate 

F p(a) for a = neap(z), where n.ec4 is something like an indefinite article. On the 

face of it, n-e4p(z) resembles our z,. But there is a difference: suppose « is a closed 

term in B™L, hence also in B®"t1L, then there is no reason why the variable z? which 

has been adjoined to B™L should be the same as the variable z®*! which is adjoined to 

B™*t1L. Of course, one could modify our. construction to‘ensure that z? = z"+!, but that 

would complicate matters. Less serious is another difference. Hilbert and Bernays would 

want F n-eap(z) = n-zea(z) whenever | Voea(p(z) < ¥(z)). This could be achieved 

quite easily in our setup by saying that z, depends not on the closed term a but on its 

equivalence class modulo provable equality.
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COROLLARY 3.2. Every non-constructive type theory £ has a conservative extension £8 

which satisfies Hilbert’s Rule. Therefore, for each prime filter P of £, the topos T(LB/P) 

is a model topos, and thus T(L?) is the topos of continuous sections of a sheaf of model 

toposes. 

This corollary yields an easy proof of completeness for non- constructive type theories, 

hence for classical type theories. 

It turns out that a similar result holds without the hypthesis (NC). Only then P will 

not range over all prime filters of the extension, but only over certain “saturated” ones. 

4. Completeness of higher order intuitionistic logic. 

The completeness theorem for higher order intuitionistic logic has been established 

before, see Lambek and Scott [1986, I1§17], where a method due to Henkin [1949, 1950], 

as elaborated for intuistionistic first order logic by Aczel [1969], was employed. A some- 

what simpler version of this proof will be presented here, before we turn to the sheaf 

representation, which is our ultimate objective. 

A prime filter P in a type theory £ will be called saturated’if, whenever Jecap(a) is 

in P and I 3;¢4T, then (a) is in P for somie closed term a of type A. We shall say that 

L has enough saturated prime filters if the intersection of all saturated prime filters is the 

set of closed formulas provable in L. 

PrOPOSITION 4.1. (a) If P is a saturated prime filter in £, then £L — L/P — LT(L/P) 

is an interpretation of £ in a model topos. 

(b) If £ has enough saturated prime filters, then a closed formula in £ is provable if 

and only if it holds under every interpretation in a model topos T(L/P). 

PROOF. (a) By assumption; £/P has the existence property for all types A such that 

I 3;eaT, in particular when A = PB. By Lémma 2.2, LT(L/P) has the existence 

property (EP) for all types whatsoever. Moreover, consistency (C) and the disjunction 

property (DP) for LT(L/P) follow immediately from the same properties in £/P, as is 

easily seen [loc. cit. II§19]. Thus T'(L/P) is a model topos. 

'(b) Suppose the closed formula g is not ‘provable, then we can find a saturated prime 

filter P such that ¢ is not in P, hence ¢ is not provable in £/P. Since £L/P — LT(L/P) 

is a conservative extension, ¢ does not hold in T(L/P). 

Having established completeness for type theories with enough saturated prime fil- 

ters, we shall now show that every type theory has a conservative extension with enough
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saturated prime filters, from which its completeness follows. 

We begin by constructing the Henkin completion £ of a type theory £. Recall from 

the proof of Proposition 3.1 that, if z is a variable of type A in £, £(z) is a conservation 

extension of £ if and only if F d;e47T in L. Assume that this is the case and let X 4 be a 

set of variables containing exactly one variable z, for each closed term « of type PA. (If 

we wish, we may identify z, with o when F @ = @' in £, but it is crucial that z, differs 

from zo when this is not the case.) Let X be the union of all X 4 for which F 3;e4T and 

put HC = L£(X). This is a conservative extension of £L. Now consider the ascending chain 

LCHCLCH*CC...... 

and form L# = H®L = |, ¢ H™L. This is also a conservative extension, which we shall 

call the Henkin completion of L. 

Except for the labelling of variables, which serves a technical purpose in the proof of 

the lemma below, the Henkin completion £ is just £L(V'), where V is a set of variables 

containing sufficiently many variables of each type A such that - 3;e4T. 

Henkin’s original idea [1949] is contained in the proof of the following lemma, which 

we shall make much use of in this and the next section. (Freyd [1972] uses a similar 

construction to show that every small Boolean topos can be logically embedded in a product 

of well-pointed topoi.) 

LEMMA 4.2. Suppose Fy is a filter in the Heyting algebra of closed formulas of £ = H°L 

and Ky is an ideal (i.e. dual filter) such that Fy N Ky = ¢. Then there exists a saturated 

prime filter P in H*°L such that ¥ C P and P N Ky = ¢. 

PROOF. By Zorn’s Lemma, we may pick a filter Py in H°L containing Fy maximal with 

the property that Py N Ky = ¢. It is well-known and easily shown that Py is a prime filter. 

(Incidentally, we could also have obtained a prime filter containing F and not meeting Kj 

as the complement of a maximal ideal @y containing Ky such that Fy N Ky = ¢.) 

Let F; be the filter in H'L generated by Py and all 4 € a for which 3;¢az € a is 

in Py and let K; be the ideal in H'L generated by K. Then F; N K; = ¢. For suppose 

that ¢» € Fy N K3, then q; | go for some qo € Kpy, hence g9 € F1 N Ky. Therefore, there 

is a py € Py such that pg, Zo, € @1,...,Ta, € an -"{t..l,...,za,.} do, and so, by existential 

specification, 

Do, 3=€A1$ € aj,... ,:BIEAnm. € a, F do,
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so that qg € Py N Ky, a contradiction. 

Now repeat the above argument to produce a prime filter P; in H'L containing F} 

such that P; N K; = ¢ and continue in the same way. Since a closed term a of type PA in 

H™L is also in H"*1L, supposing 3:e42 € « is in P,, we should be careful to distinguish 

the variable z% in H™t1L from the variable z%*! in H"*2£. In particular, the z, above 

should really be z2. 

In this manner one obtains filters F,, and prime filters P, such that 

FRCPRCRCPCRCPC 

Let P be the union of the P,. Then clearly P contains Fy and PN Ky = ¢. To see that P 

is saturated, suppose 3;c4z € a'is in P, then 1t is is some P, so t} € aisin Pp4, hence 

in P. 

PROPOSITION 4.3. (Completeness of intuitionistic higher order logic.) Every type theory 

L has a conservative extension £, its Henkin completion, obtained from £ by adjoining 

sufficiently many variables, which has enough saturated prime filters. Thus, a closed 

formula of £ is provable if and only if it holds in every model topos T(L¥ /P), P being 

any saturated prime filter of LT, 

PROOF. It suffices to show that £ has enough saturated prime filters P, since then 

T(LH /P) will be a model topos by Proposition 4.1. Let ¢ be any closed formula of £H 

not provable in L. We may assume that ¢ is in £' = H"L. Apply Lemma 4.2 to L' and 

note that H°L' = H®L = LH. Let F} be the filter generated by T in £' and K}, the 

ideal generated by ¢ in £'. Then the lemma produces a saturated prime filter P of LH not 

containing gq. 

What is the relation between the Hilbert-Bernays completion £8 studied in Section 

3 and the Henkin completion £H of Section 4? The former adjoins a witness to every 

existential statement which can be proved. The latter adjoins a potential witness to every 

existential statement, provable or not, provided this can be done conservatively. 

To see.that £ is indeed different from L2, consider the closed term w = {z € Q | «} 

of type P{2. Then - J;eqz € w but not F z,, € w (since otherwise 'V cqr) unless L is 

inconsistent, even though z,, € w is in all saturated prime filters containing F;.
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5. _Sheaf representation of the Henkin completion. 

We shall now establish our principal result, which strengthens the completeness the- 

orem of the previous section. 

THEOREM 5.1. Every type theory £ has a conservative extension £, its Henkin com- 

pletion, obtained from L by adjoining sufficiently many variables, such that the topos 

generated by L¥ is the topos of continuous global sections of a sheaf of model toposes. 

PROOF. We begin by constructing a new topological space, the saturated specirum of L, 

also denoted Spec L: its points are the saturated prime filters P of £LH and its basic open 

sets have the form 

V(p)={P € Spec L |pe P}, 

where p is any closed formula of £. Here are some more or less obvious properties of V(p): 

(1) V(pAg)=V(p) N V(q); 
(2) V(pVq)=V(p)UVI(g) 
(3) V(p) CV(g)ifand only if p+ g; 
(4) NV (p) = (p), the principal filter in H®L; 

(5) V(p) is compact. 

(1) holds because the points of the spectrum are filters; (2) holds because they are prime. 

To show (3) in the less obvious direction, suppose V(p) C V(q) but not p - g. We obtain a 

contradiction by finding a saturated prime filter P in £LH such that p € P but not ¢q € P. 

This is done by Lemina 4.2, taking Fy to be the filter in £ generated by p and K|, the ideal 

in £ generated by ¢. (4) is proved like Proposition 4.3 with p in place of T 

Another application of Lemma 4.2 yields (5). For assume that 

V(p) € |JV(a), 
iel 

I being some set of indices. We claim that p belongs to the ideal K, in L generated by 

the ¢;. Otherwise let Fy be the filter generated by p in £, then Fy N Ky = ¢, so we could 

find a saturated prime filter P containing Fy but not meeting Ky, hence containing p but 

none of the ¢;, thus contradicting our assumption. It follows that I has a finite subset 

{t1,...,in} such that pF¢;, V Vg, . From (2) and (3) we then infer that 

V(p) € V(gi,)U...UV(gi,),



which shows that V(p) is compact. 

We are now ready to construct a presheaf. If p is a closed formula in £, one can see 

from (3) or from (4) that V(p) determines the principal filter (p) in L. With each basic 

open set V(p) we associate the topos T(p) = T(L¥ /(p)). Whenever V(p) C V(q), one 

infers from (3) that (p) C (q), hence one obtains a canonical translation £# /() — 

LH /(p), and consequently a logical functor T(¢) — 7(p). It is well-known how to extend 

this assignment V(p) — T(p) to a contravariant functor from the spectrum of L7 /L, 

viewed as a category, to the meta-category of toposes: to a union of basic open sets one 

assigns the inverse limit of the corresponding toposes. 

We claim that the presheaf we have just constructed is in fact a sheaf. In view of 

compactness, it suffices to check that, whenever 

V(p) =V(a1)U...UV(gn), 

the following is an equalizer diagram: 

n n 

T(p) = [[T(@)= [] T(aiAg) 
i=1 ij=1 

Note that all the toposes T(p), T(g;) and T(gi A g;) have as objects equivalence classes 

of closed terms of type PA for any type A in L, but the equivalence classes are defined 

modulo p, modulo ¢; and modulo g¢; A g; respectively. 

Suppose the a; modulo ¢; (i = 1,...,n) are objects of T(g;) so that the restrictions 

of a; modulo ¢; and a; modulo g; to T(g; A ¢;) coincide, that is, 

(i) gi Agj | ai = o, 
for all z and 5 = 1,...,n. We wish to find a unique object @ modulo p in 7(p) which 

restricts to a; modulo g; in 7(g;). Note that by (2) and (3) above, we also have 

(ii)) pF@a V. Vn, 

Gil) s Fp (1=1,...,n). 

The following statement, known as definition by cases, is easily shown to hold in any 

intuitionistic type theory, in particular in £LH: 

N\ (ging) = ai=a;), \/ et Fuera \(gi = v =) 
i,j:l =1 =1



50 

In view of (i) and (ii), we obtain in L£: 

pk 3luera /n\(q;' = u = a;). 
i=1 

Passing now to LT(L* /(p)), the internal language of 7 (p), we have 

F3luepa /n\(g'_ = u=q;). 

i=1 

By Lemma 2.3, there is a unique arrow o : 1 — PA in T(p) such 

In view of the properties of the translation n.m (,) discussed at the end of Section 1, a is 

the image of a closed term « of type PA in £¥ /(p), unique up to provable equality, and 

- /\(gi > a= a;) 

i=1 

in LH/(p‘), that is, in £# 

pk A@i = a=a). 
=1 

It then follows from (iii) that 

q;"_a=ai (i=11"'1n)a 

hence from (ii) that 

rFa=aq; (1=1,...,n). 

Thus a modulo p is the unique object of 7 /(p) which restricts to the a; modulo g¢; in 

7T [(qi). We may therefore write a in place of «;. 

As far as objects are concerned, the diagram under consideration is thus an equalizer 

diagram. Let us now consider arrows. An arrow f; : @ — f in T(g;), with 8 of type PB 

say, is given by its graph p;, a closed term of type P(A x B) in £L# /(g;), such that 

gi F pi € Fen(a, B)
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in £L¥ | where Fen(a, B) is short for: 

{fweP(AxB)|wCaxfBAVealr € a = Iyep < z,y >€w)}. 

We wish to find a unique arrow f o« — 8 in 7 (p) which restricts to f; in 7(q;). 

As above, we find a closed term p of type P(A x B) in £ /(p), unique up to provable 

equality, such that 

¢t p=pi (:=1,...,n). 

It follows that 

gi b p € Fen(a, B) (i=1,...,n), 

hence by (ii) that 

pkp€Fen (a,fB). 

Therefore p is the graph of an arrow f « — 8 in 7(p). Thus the diagram in question is 

an equalizer diagram also as far as arrows are concerned. 

We have thus shown that the assignment of the topos T (p) = T(LH /(p)) to the basic 

open set V(p) yields a sheaf. It remains to determiine the stalks of this sheaf. The stalk at 

P is defined to be the direct limit of all toposes T (p) such that P € V(p), that is, p € P. 

This direct limit is to be calculated in the meta-category of toposes and logical morphisms. 

Since the functor T is left adjoint to the functor L, it suffices to find the direct limit of 

the £LH /(p) in the meta-category of type theories and translations. As all these languages 

have the same types and terms, we need only take the union of the principal filters (p), 

thus obtaining the filter P. It follows that the stalk at P is T(Lf /P), which was shown 

to be a model topos in Proposition 4.1. 

The proof of the theorem is now complete. 
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