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Recently, I prepared an article discussing the develoment of category theory 

(Mac Lane 1988b). Peter Johnstone, in commenting on its meaning, observed that 

category theory began in a collision between ideas: Algebra clashing with Topology. 

So it was: Eilenberg, coming from topology, met Mac Lane, coming from algebra; 

together they chanced upon a problem involving both these subjects. From this 

collision, of ideas and of individuals, both homological algebra and category theory 

developed. 

1. Homological Algebra. In 1940, Norman Steenrod had described the “Reg- 

ular cycles” of a compact metric space in order to define a new and more expressive 

homology group (MR 2, p. 73; note that most references in the present article will 

be to the volume and page of the correspon’difig review in Mathematical Reviews). 

However, Steenrod had not been able to compute this group for the case of the 

p-adic solenoid, for a prime number p. (This solenoid is the intersection of an in- 
finite sequence of solid tori T,, where T;41 winds p times around inside T;,.) On 

the other hand, the class field theory for a normal extension N of a base field K 

had used group extensions of the multiplicative group of N by the Galois group 

G acting on N. In this connection, Mac Lane had studied group extensions more 

generally, and in particular the group Ext(G, A) of all abelian group extensions of 

the group A by the group G. He had calculated a particular case which seemed of 

interest: That in which G is the abelian group generated by the list of elements a,, 

where ap4+1 = pa, for a prime p. After a lecture by Mac Lane on this calculation, 

Eilenberg pointed out: that the calculation closely resembled that for the regular 

cycles of the p-adic solenoid; indeed, the group G above is the dual of the solenoid, 

regarded as a topological group. Joint examination of this surprising connection— 

a collision between group theory and homology theory— soon led Eilenberg-Mac 

Lane to formulate a “universal coefficient theorem”: The cohomology H"(X, A) of 

a space X with coefficients in the abelian group A can be described in terms of the 

homology of that space by a short exact sequence (MR 4, p. 88): 

0 — Ext(Hp41(X),A) — H*(X,A) — Hom(Hn(X),A) — 0. 

Here the scond map p is that given by evaluating each cocycle of X on each integral 

cycle; i.e., on each element of the integral homology group H(X). The development 

of this collision between algebra and topology has been described in more detail
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(Mac Lane, 1988a in the list of references). In the hands of Cartan-Eilenberg, 
it soon turned out that it involved the construction of Ext as the first derived 

functor of Hom; in other words, this basic idea of homological algebra arose from 

the unexpected collision of class field theory with regular cycles in homology. 

2. Categories. In order to treat the universal coefficient sequence under the 

inverse limits used in the definition of Cech cohomology one needed to study the 

behavior of this short exact sequence under a continuous mapping f X — Y 

of spaces. Since Hom(—, A) and H(—, A) are both contravariant, this leads to a 

diagram of the form 

H™Y,A) —— Hom(Hn(Y),A) —— 0 

Lr r 
H™(X,A) —— Hom(Ha(X),A) — 0, 

The diagram commutes, and this was then regarded as a sort of expression of the 

fact that the mapping p described above is a “natural” one. But in order to make 

exact sense of this statement of naturality, one had to know how H(X) depends on 

X; in present language, to know that it is a functor.of X which goes from a suitable 

category of spaces to the category of abelian groups. Thus this clash of algebra with 

topology demanded that one define first the notion “category” and then “functor” 

so that the notion of natural transformation between funct'prs could be properly 

described. From this collision arose category theory (Eilenberg-Mac Lane, 1945, 

MR 7. p. 109). | 

3. Group Cohomology. In a group extension of an abélian group A by a 

non-abelian group G the multiplication of representatives of the cosets r and y of 

G can be described by a factor set f(z,y) € A which satisfies a suitable identity 

expressing the associativity of multiplication. The set of all equivalence classes of 

such factor sets constitute an abelian group H?(G, A). These groups were much 

used in class field theory in the case when G is the Galois group of a normal field 

extension acting on the group of non-zero elements of the extension; in particular, 

this group arose in the description of the crossed product algebras split by the field 

extension A. Other questions about such field extensions had led the algebraist 

Oswald Teichmuller (MR 2, p. 122) to introduce three-dimensional factor sets 

satisfying a suitable idéntity, with equivalence classes forming an abelian group 

H3(G, A). Despite his remarkable talents, Teichmuller did not get beyond the 

dimension 3 for these cohomology groups, probably seeing no purpose in such an 

extension. But Eilenberg-Mac Lane, motivated by the use of H2(G, Z) and thus 

H?(G, A) in the Hopf description of the effect of the fundamental group G on the 

second homology (and second cohomology) of a space, thought that there might 

well be a similar influence upon cohomology groups in all the higher dimensions.



Hence, using singular simplicies to justify the boundary formulas, they defined the 

general cohomology groups. In other words, when there was no collision, nothing 

went beyond H?3; with a collision between crossed products in algebra and higher 

cohomology, the ideas for the cohomology of groups were forced. (Mac Lane: Origins 

of the cohomology of groyps, MR 81j#01030) 

4. Differential Geometry. A typical and speculative question is: Why was 

the idea X discovered at that particular time ¢? Thus the middle of the 20th century, 

with its emphasis on axiomatic methods and abstraction, was a favorable time for 

the discovery of categories; as someone has said, they would have been natural 

for Emmy Noether. But, absent Eilenberg-Mac Lane, would category theory have 

been developed? An alternative possible source lies in differential geometry; there 

the transport of geometrical structures from one tangent bundle to another along 

paths inevitably involves the groupoid of the homotopy classes of these paths, while 

with this groupoid other more general categories are at hand. In other words, a 

collision between algebra and ideas of differential geometry leads to category theory, 

and this collision was developed, 1952-1979, in the work of Ch. Ehresmann, for 

example in his “Local structures” (MR 20, #2392 and 84f #01118). The large body 

of Ehresmann’s work is full of fertile ideas (such as double categories, structured 

categories or sketches), but their adequate development was unduly delayed because 

Ehresmann and his school for many years seem to have avoided contact and hence 

collision with the ideas and terminology of other workers in category theory. 

5. Adjoint Functors. For a considerable time after their discovery in 1945, 

categories served chiefly just as a convenient language for axiomatic homology the- 

ory and for homological algebra. The next decisive notion, that of an_adjoint func- 

tor, did not arise until 1958—although the closely associated notion of a universal 

construction had been recognized by several authors ten years before that. Hence 

the speculative question: Why was the discovery of adjoint functors so delayed? 

One possible answer is that a number of the most immediate adjoint functors— 

including those present in many universal constructions— were so trivial that they 

would hardly be named: for example the usual forgetful functors are often passed 

over in silence, without any notation. But there is another possible explanation. 

Adjoint functors did first appear in a paper of Daniel Kan (MR 24 #A1301) This 

paper came immediately after I{an’s intensive study of homotopy via sxmphcml sets. 

(Then called semi-simplicial complexes)—and for this study Kan had to examine 

certain relevant adjoint situations: that between loop space and suspension and, 

even more important, the fact that the Milnor geometric realization of a simplicial 

set (MR 18 p.815) is left adjoint to the functor sending a space into its singular 

complex. In other words, this particular collision between geometry (spaces) and 

algebra (simplicial sets) directly involved the idea of adjunction, and so made the 

discovery of this idea almost inevitable. 

6. Universal Algebra. When this subject began, in the work of Garrett
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Birkhoff, an algebra was described as a set S equipped with a list of operations 

(unary, binary, ternary, and:so on), together with identities between specified com- 

positions of the given operations. Much later it was recognized that such .an al- 

gebra really involves all of these composite operations from the beginning. This 

involvement was first explicit in (unpublished) lectures by Philip Hall on clones of 

operators; a clone being the set of all n-ary operations for each n. (This in lectures 

at Cambridge Uhiyersity about 1950). Independently, in 1963, F. W. Lawvere gave 

an even more elegé.nt formulation of this invariant approach to universal a.lgéb:a, 

He defined an algebraic theory as a category with objects the natural numbers n, 

each n represented as the product of n 1’s, with the arrows n — 1 as the n-ary 

operations of the theory (MR 34#£1373). 

This invariant description of an algebra was clearly a great step forward—fully 

analogous to the description of a group as a set with a suitable multiplication 

and not just in terms of some set of generators and relations. Thus the related 

discoveries of clones and algebraic theories provided the possibility of a productive 

collision between the original notion of a universal algebra and ideas from category 

theory. It is.to be greatly regretted that the specialists in universal algebra have 

stubbornly ignored this possibility. Philip Hall’s notion of a. clone appeared in 

book form in 1965, in the monograph by Paul Cohn (MR 31#224)— but without 
the connection to -'ca,teg_ories. George Gratzer’s encyclopedic book on Universal 

Algebra (MR 40, #1320 and second, edition MR 80g#08001) does remark that the 

Lawvere Algebraic Theories do give “the niost elegant treatment”— but the book 

unfortunately wholly avoids this treatment. The result is that universal‘algebraists 

still use a bompleteiy obsolete notion of the “type” of an algebra; namely, the list 

of generating operations and their arities (se¢ e.g., p:23 in S. Burris and H. P: 

Sankappanavar, MR 83k#08001). This ridiculous limitation means that a group 

described by the operations multiplication, inverse, and unit is of a different type 

from a group described by the operation (z,7) — zy~!. The sad result of this 

over-specialization and avoidance of collision is that universal algebra today is one 

of the most backward and isolated branches of mathematics. 

7. Categories in Prague. The development of a new “school” of mathematics 

1n a _give,h locality may often come about because of the collision of ideas: Soine 

local inputs clashing with some ideas from outside. This appears to be the case with 

the very active development of categories in Prague. Thanks to information given 

me by Jiti Adamek, I may try to describe this development tentatively as follows 

(See also Mac Lane 1988b, p. 361). First of all the pioneering work of the influential 

topologist Eduard Cech involved a background of precategorical concepts—as for 

example, the use of inverse limits in the definition of the Cech cohomology groups. 

Then in about 1960 A. G. Kurosh from Moscow University lectured on' categories 

in Prague. This in turn led to further categorical discussions in the major semi- 

nars on general topology conducted in Prague by Miroslav Katétov; this involved



a study of the systematic paper on categories by Kurosh, Lifshits, and Sulgeifer 

(MR 22 #9526) as well as the 1951 paper by Katétov “On a category of spaces” 

(MR 32 #4644). This activity stimulated the initial research on category theory 

by V. Trnkova in 1962 (MR 26 #3627) and by Miroslav HuSek in 1964 (MR 30 

#4234). There were also effective contacts with the topological studies of J. de 

Groot in Amsterdam; visits there led to the work of Z. Hedrlin and of A. Pultr on 

the representation of small categories within other specific categories (MR 30 # 

3123)— a subject of continued interest today in Prague. Clearly this development 

represented an international exchange and collision of ideas. 

8. Sheaves. The development of sheaf theory prowdes an especially striking 

example of a multiple collision of ideas— from function theory, topology, algebraic 

geometry, and differential equations. The idea of a sheaf is implicitly present in 

complex ana.ly51s as the sheaf of germs of analytic functions on C and in the ac- 

companying notion of analytic contmuatlon Indeed this notion of continuation by 

patching together different power series expansions foreshadows the notion of con- 

structing more general functions by pa.tchmg together local pieces (e.g., H. Weyl, 

“Die Idee der Riemannsche Flasche”, MR 16, p. 1097). For functions of several 

complex variables the intensive study of the Cousin problems (e-g., K. Stein, MR 

13, p. 224 and H. Cartan MR 7, p. 290) concerned functions defined d1fi'erent1y 

over several parts of a space and so developed a background for sheaf theory. In 

algebraic topology, obstructlon theory required the use of coefficient groups such as 

the homotopy groups mn(X,z) based at all the different points z of the space X 

this led Norman Steenrod to his consideration of homology with local coeflicxents 

(MR 5, p. 104). At about the same tirfie,_ J. Leray’s profound study of the co- 

homology of fiber spaces involved the first formal definition of a sheaf (a faisceau; 

MR 12, p.. 272). At that time, he defined sheaves on a space in terms of pieces 

given on closed subsets of the space; the present definition in terms of pieces given 

on open subsets was worked out by H. Cartan in his seminars (1950-51, exposé 

14ff, MR 14, p. 670, 1951-52, exposé 15ff, MR 16, p.235). The description of a 

sheaf on X as an “espace étale” over X was developed in this connection by M. 

Lazard. The basic notion of cohomology with coefficients in a sheaf of modules then 

included Steenrod’s cohomology with local coefficients. In 1955, J. P. Serre in his 

famous paper “Faisceau algébrique cohérent” (MR 16, p. 953) showed decisively 

that sheaf theory was needed to get suitable cohomology groups for algebraic geom- 

etry. Shortly thereafter, A Grothendieck, in his study of the.extent of homological 

algebra, observed that the sheaves.of modules on a space form an abelian category; 

this showed clearly the important role of this type of category. (‘Lohoku, MR 21, 

#1328).- For a full discussion, we refer to the historical article:by John W. Gray on 

sheaf theory (MR 82j, #01060)—but the briefindications above show that the rapid 

development of sheaf theory resulted from: a multiple collision of ideas—Riemann 

surfaces, several complex variables, local coefficients for cohomology, algebraic ge-



ometry and abelian categories. The collision continues to reverberate today—as in 

the study of D-modules and perverse sheaves in geometry (see e.g., R. Macpherson 
and K. Vilonen, MR 87m,#32028). 

9. Grothendieck Topologies. In SGA 1, the first of his notable series of the 

“Séminaire de Géometrie Algébrique”, (MR 50, #7129), Alexander Grothendieck 

contributed another decisive idea which arose from a collision between Galois theory 

and the study of covering spaces in topology. fp:Y — X isa covering space, then 

according to the usual definition each point z of X has a neighborhood U — X 

such that the pullback U xx Y is a coproduct of copies of U (i.e., seen locally, X 

consists of a stack of homeomorphic copies of neighborhoods U.) Moreover, the 

covering ‘group of p consists of those homeomorphisms a Y — Y which preserve 

p (pa = p). On the other hand, in the Galois theory, a normal extension of fields 

is a monomorphism m K — N of fields, and the Galois group consists of all 

the automorphisms a N — N with am = m. Also, if K — L is another finite 

field extension of K, the tensor product (the pushout) N ® ¢ L is a commutative 

algebra over IV, and as such a direct sum of field extensions of N. The normality 

of N means that when one summand is N, then all the summands are N, so that 

N Qx L = Y. N. The analogy with the stacked pieces of a covering space is a strong 

one (mvolvmg a duality, pushout to pullback but the analogy misses at one point, 

in that a neighborhood U — X in covering spaces is a monomorphism, while the 

corresponding K — N is not the dual: i.e., not an eplmorphlsm Now at that time 

( 1971) topology and sheaf theory was couched in terms of c coverings by monos from 

nelghborhoods This analogy and its partial failure led Grothendieck to understaiid 

that one could also define sheaves for “covenngs of X by families of maps C — X 

which were not necessarily mono. T hlS led to his definition of a “topology” in terms 

of suitable axioms for such “ covenng_s . This was a step which was decisive for the 

introduction of the étale topology and other topologies ir algebraic geometry. This 

idea of a topology by way of such coverings first appeared in M. Artin’s Harvard 

lecture notes on Grothendieck topologies. It is a penetrating example of an idea 

which arose, in part, from a collision between topology (open coverings) and algebra 

(Galois theory). My colleagues in algebraic geometry still view this discovery as 

wonderful. 

10. Topos. A turbulent period of clashing ideas is often followed by more spe- 

cialized study, because ideas formed by a collision normally lead to further internal 

developments. This was the case for the notion of a Grothendieck topology, defined 

by giving a category (a “site”) and a notion of covering for that site. Then the cate- 

gory of sheaves for that site constituted the basic object of study for Grothendieck’s 

drastic revision of algebraic geometry as it was developed systematically in the fa- 

mous SGA IV of 1963, later published (MR 50, #7130 to 7132). The category of 

sheaves for a site was called a topos (now a Grothendieck topos, to distinguish it 

from the more general elementary topos). Giraud found a characterization of such



categories of sheaves. In one version of SGA IV (page 3 of exposé 4) appears the 

slogan “The authors of the present seminar consider that the object of topology is 

the study of toposes and not just of topological spaces” The resulting rapid devel- 

opment of topos theory for a period changed the general view of the way in which 

algebraic geometry should be carried out and assisted in the solution of some.fa- 

mous problems, such as the Weil conjectures (Deligne MR. 49 #5013). This done, 

there has been a general return to more traditional views of specific problems in 

algebraic geometry. Of such is the ebb and flow of the development of mathematics. 

11. Elementary Topos. In 1969, F. W. Lawvere held the new Killam Profes- 

sorship at Dalhousie University in Halifax and in this connection was able to bring a 
number of visitors, in particular Myles Tierney. During this year, Tierney planned 

to lecture on axiomatic sheaf theory, following the general lead of the Grothendieck 

SGA IV. Lawvere, on the other hand, beginning in 1963 and 1964, (MR 30 #2029, 

MR 53 #130) had worked to find an appropriate axiomatization of the category 

of sets. In this work, he proposed to use the composition of functions and not 

set membership as the primitive notion. These two proposals—axiomatic sheaves 

and axiomatic functions—collided with sparks. For sets, it presently appeared that 

the usual notion of a characteristic function could be written as a pullback from 

the two element set €2 of truth values, and that there was a similar such 2—no 

longer two-valued—in categories of sheaves. During the year 1969-70. this collision 

led to the beautiful and expressive definition of an elementary topos, described by 

axioms including the existence of a subobject classifier. The axioms were all first 

order statements in the language of categories—unlike the Giraud characterization 

of Grothendieck topoi, which depended on the requirement of infinite coproducts. 

There was a further collision with the notion of forcing from set theory, since Law- 

vere and Tierney were able to show that Paul Cohen’s proof of the independence 

of the continuum hypothesis in a suitable topos (a functor category, of functors to 

sets from the Cohen partially ordered set) by regarding a Grothendieck topology 

as given by a suitable idempotent operator ;j §2 — 2 on the subobject classifier 

of this topos. The crucial observation was that sheafification for this topology was 

the essential step in Cohen’s construction of a new model violating the continuum 

hypothesis (Tierney, MR 51, #10088). 

12 Development of Topos Theory. Once the notion of an elementary topos 

had been revealed by collision and described by axioms, there ensued a rapid devel- 

opment of this idea, with many simplifications in the axioms and in the deduction 

of properties of an elementary topos. Lawvere presented the original axioms at the 

International Congress of Mathematicians at Nice in 1970 (MR 55 #3029). Soon af- 

terwards, the notes of Tierney’s lectures at Varenna were circulated (MR 50 #7277) 

independently of these lectures, Benabou’s seminar in Paris in 1970-71 developed 

the properties of an elementary topos. Peter Freyd, lecturing in Australia, provided 

decisive representation theorems for topoi in his 1972 paper “Aspects ,ofTI‘opo_i” (MR



53 #576). A systematic presentation of topoi had appeared in the 1971 Aarhus lec- 

ture notes of Kock and Wraith (MR 49 #7324). ‘There was a subsequent treatment 

in a 1975 paper by Wraith (MR 52 #13989). Mikkelson and then Paré showed how 

colimits could be constructed from limits and the other axioms: Finally, the many 

developments were all pulled together in a definitive 1977 book by Peter Johnstone, 

“Topos Theory” (MR 57#9791). This listing covers only selected high points of 
the rapid internal development of the subject. It illustrates well thé notion of an 

internal development following a collision of ideas. 

Such an internal development is generally in contrast to the immediate turmoil of 

a collision. However, in this case, there were also further collisions. For example, it 

turned out that the logic which is “internal” to a topos, with propositional operators 

acting on the subobject classifier, is in general an intuitionist logic, and this collision 

with intuitionism brought in other people and led to further advances. Again in 

1972 the Grothendieck school introduced (M. Hakim, MR 51 # 500) a classifying 

topos for commutative rings—that is, a topos with a “universal” internal ring object 

such that every topos with such a ring could be obtained from this one by a pullback 

taking the universal ring to the other one. For algebraic geometry the commutative 

rings play a prominent role, but this result for them led to another collision calling 

for the construction of classifying topoi for other structures. Thus, in 1972 A. Joyal 

and G. E. Reyes descnbed the classlfymg topos for any finitary algebraic theory (MR 

50 #13182). Then in 1977, M. Makkai and G: E. Reyes did the same for possibly 

infinitary algebraic theories (MR 58 #21600). There were further contributions of 

related ideas by Diaconescu in 1975 (MR 52 #532) and by Benabou, also in 1975 

(MR 52 #13990). Then definitive t_rea.,i;,m,ents of classifying topoi were given by Joyal 

(unpublished) and by Tierney (MR 53 #13357). Other tesults spanned both logic 

and algebraic geometry, as with Lawvere’s 1975 observation (MR 52 #13384) that 

the Deligne theorem about enough “points” in a topos was,éssentially equivalent 

to Godel's completeness theorem:. Other such connections with logic have been 

emphasized by A. Joyal (often unpublished). 

13. Computer Science. Not all collisions of ideas turn out to be productive. 

For some time now there have been proposed various uses of categories in computer 

science. About 1972 there was considerable enthusiasm for the study of finite state 

machines, not as usual just in sets but in more general categories. Thus J. A. 

Goguen in 1972 (MR 47 #302 and MR 48 #372) emphasized the idea that the 

minimal realization functor was adjoint to the behavior (of a machine). In the same 

year, H. Ehrig and M. Pfender wrote a'book on categories and automata (MR 49 # 

5119), while soon afterwards in 1974, M. Arbib and E. G. Manes wrote on machines 

in a category (MR 50 #16156 and 52 # 4714). This collision of category theory 

arid automata has not subsequently prospered, though this may in part be due to 

the rapid change of fashiors in computer scierice. A more lasting categorical notion 

for compuiérs is that of initial algebra semantics, as developed for example by-J. A.



Goguen and J. W. Thatcher in 1974 (MR 54 #4168). This direction makes good 

use of the notion of a universal (initial) construction. 

Currently the active investigation of the “Polymorphic” data types appears to 

offer a much more productive collision. The essential observation appears to be that 

one often performs the same operation on several different types — and that ways 

of doing this can be effectively formulated with categorical techniques. There are, 

for example, recent investigations by Peter Freyd, John Gray, and Andre Scedrov. 

I think that this developing collision will be productive. 

Conclusions. An examination of the history of mathematics can serve many 

purposes. One such is to illuminate the dynamical processes by which mathematics 

develops. The present brief analysis has shown that the development of category 

theory in the last 43 years has derived much stimulus from the interaction with other 

fields. At this time, when so much of mathematics tends to be highly specialized, 

this can be helpful. Thus the slogan: Watch out for profitable collisions. 
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Note added in proof on April 14, 1989 

This essay is intended as a quite preliminary study of a historical question: 

What are the forces and dynamical processes which influence the development of 

mathematics? The thesis of this essay is that a “collision™ of ideas from different 

fields is a significant such force. This thesis needs further study and a wider choice 

of examples. Now any examination of the history of late 20th century mathematics 

is complicated by the presence of an overwhelming number of publications of quite 

varied quality and scope. For this reason I have adopted the method of reference 

by the review number of each publication from Mathematical Reviews; this method 

is not intended as a recommendation of the quality of the review, but as a way of 

shortening the citations; I have previously used this method in 1988b. 

As a referee has observed, some of the collisions here noted should be described 

with greater care. In particular, the discussion of category theory in Prague is too 

brief; research there went far beyond questions of the representation of categories, 

while these questions themselves concerned the representations of both small and 

large categories, and indeed arose in part from a collision with combinatorics and 

with questions of universal algebra (Isbell; MR29 #1238), as reflected in various 

papers, such as that by Hedrlin and Pultr (MR 33, #85).


