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Abstract

We introduce regular languages of morphisms in free monoidal categories, with
their associated grammars and automata. These subsume the classical theory
of regular languages of words and trees, but also open up a much wider class of
languages of planar string diagrams. We give a pumping lemma for monoidal
languages, generalizing the one for words and trees. We use the algebra of mo-
noidal and cartesian restriction categories to investigate the properties of regular
monoidal languages, and provide sufficient conditions for their recognizability
by deterministic monoidal automata.
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1. Introduction

Free monoids play a central role in classical formal language theory, but
language theory has been extended to many algebraic structures, such as infinite
words [29], rational sequences [1], trees [21, 2], countable linear orders [7], graphs
of bounded tree width [11], etc. Recently, several works have appeared that aim
at unifying the language theory of these diverse structures [3, 38].

One approach to unification is to view these structures as algebras for mon-
ads on the category of sets, and then to develop language theory at the level of
monads. In this vein, Bojańczyk, Klin and Salamanca [3] have given sufficient
conditions on a monad for the correspondence between regularity and defin-
ability in monadic second-order logic to extend to languages over its algebras.
Previously, universal algebra has also been fruitfully applied to the problem of
giving a unified presentation of automata over diverse algebras, for example in
the classical work of Eilenberg and Wright [18], and Thatcher and Wright [37].

However, there are many algebraic structures arising neither as algebras for
monads on the category of sets, nor as structures in classical universal algebra.
In particular, this is true of many structures in category theory, such as monoidal
categories. At the same time, these structures can be considered as natural
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generalizations of monoids to higher dimensions, and so offer promise for an
algebraic approach to higher-dimensional formal languages.

A natural first step, which we take in this paper, is to replace monoids
with 2-monoids, better known as strict monoidal categories. Monoids can be
seen as categories with one object, in which morphisms are the elements of
the monoid. Strict monoidal categories can be defined as 2-categories with one
object: “higher” monoids in which there are now additionally transformations
between the elements. We call languages in these categories monoidal languages.

We introduce grammars and automata for monoidal languages, defining the
class of regular planar monoidal languages. We show how these include classical
and tree automata, but also open up a wilder world of string diagram languages.
In fact, our framework is flexible enough to treat any structures arising as al-
gebras for monads over multi-input, multi-output graphs known as monoidal
graphs. We indicate some future directions along these lines in our conclusion.

By investigating morphisms in monoidal categories from the perspective of
language theory, this work contributes to research into the computational ma-
nipulation of string diagrams, and so their usage in industrial strength applica-
tions.

Outline. In Section 3, we cover some preliminaries, recalling the basic algebraic
ingredients needed for the rest of the paper: monoidal graphs and monoidal cat-
egories, along with their string diagrams, a graphical formalism for representing
their morphisms. In Section 4, we introduce monoidal languages and regular mo-
noidal grammars, a finitary specification of monoidal languages defining the class
of regular monoidal languages. In Section 5, we introduce the pumping lemma
for regular monoidal languages, and use it to analyze a non-regular monoidal
language. In Section 6, we introduce non-deterministic monoidal automata and
their associated monoidal languages, which give an operational characterization
of regular monoidal languages. In Section 7, we show how regular word and tree
automata are special cases of monoidal automata. In Section 8, we give some
closure properties of regular monoidal languages. These are the usual closure
properties of regular languages, with the exception of complements. In Section
9, we introduce the syntactic pro of a monoidal language by analogy with the
syntactic monoid of a regular language. In Section 10, we introduce determin-
istic monoidal automata and the concept of causal history, which is used to
investigate deterministic recognizability and provide a necessary condition on a
language for it to be deterministically recognizable. We also give an algebraic
condition on a language sufficient for deterministic recognizability, using the
syntactic pro. In Section 11, we introduce convex relations and give a powerset
construction for a class of monoidal automata.

Comparison with the conference paper. This work is an extended version of the
conference paper [16]. Besides reorganization and additional examples, there are
several new sections, extensions of concepts, and corrections. In particular, we
introduce a pumping lemma for regular monoidal languages (Lemma 5.1), and
apply this to a new example of a monoidal language (Definition 5.4), showing
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that it is not regular (Proposition 5.6). We correct the details around convex
relations: the lift ∆∗ need not be unique, as claimed in [16]. Prerequisites are
covered in more detail, making the paper more self-contained. We also include
all proofs omitted in the conference version.

2. Related work

Bossut [4] studied rational languages of planar acyclic graphs and proved
a Kleene theorem for a class of such languages. Bossut introduced a notion
of automaton for these languages, but these lack a state machine denotation –
being more similar to our grammars. Bossut’s graph languages feature initial
and final states, whereas in this paper we do away with these by considering
scalar morphisms, which more neatly generalizes the theory of regular string and
tree languages. We make explicit the fact the languages of graphs investigated
by Bossut have an underlying algebra, that of monoidal categories, and hence
fully leverage this algebra in our proofs and definitions. This leads us in quite
different directions of investigation from Bossut.

In the preprint [22], Heindel recasts Bossut’s approach using monoidal cate-
gories, and this serves as a starting inspiration for ours, although our definitions
and direction of development differ. Unfortunately the purported Myhill-Nerode
result was incorrect, due to a flawed definition of syntactic congruence. We rec-
tify this in Section 9, but a Myhill-Nerode type theorem remains open.

Zamdzhiev [40] introduced context-free languages of string diagrams using
a combinatorial representation of string diagrams called string graphs, and the
machinery of context-free graph grammars. In contrast, our approach does
not require an intermediate representation of string diagrams as graphs: we
work directly with morphisms in monoidal categories. This allows us to use the
algebra of monoidal categories to reason about properties of monoidal languages.

Winfree et al. [33] used DNA self-assembly to simulate cellular automata
and Wang tile models of computation. The kinds of two-dimensional languages
obtained in this way can be seen quite naturally as regular monoidal languages,
as illustrated in Example 4.10.

Walters’ note [39] on regular and context-free grammars served as a starting
point for our definition of regular monoidal grammar. Rosenthal [32], devel-
oping some of the ideas of Walters, defined automata as relational presheaves,
which is similar in spirit to our functorial definition of monoidal automata. The
framework of Colcombet and Petrişan [10] considering automata as functors
is also close in spirit to our definition of monoidal automata. However, all of
these papers are directed towards questions involving classical one-dimensional
languages, rather than languages of diagrams as in the present paper.

Fahrenberg et al. [19] investigated languages of higher-dimensonal automata,
a well-established model of concurrency. We might expect that the investiga-
tions of the present paper correspond to a detailed study of a particular low-
dimensional case of such languages, but the precise correspondence between
these notions is unclear.
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3. Monoidal Graphs, Pros, and their String Diagrams

In this section we introduce the main algebraic structures including the kinds
of monoidal categories known as pros. Morphisms in monoidal categories can be
represented using string diagrams, a kind of “graph with interfaces”. Monoidal
graphs are intuitive to work with and often lead to shorter proofs [23, 35].
String diagrams can be used to present monoidal categories. The basic building
blocks for string diagrams are given by monoidal graphs, a kind of multi-input,
multi-output graph:

Definition 3.1. A monoidal graph G is a set BG of boxes, a set SG of sorts and
functions s, t : BG ⇒ SG

∗ to the free monoid over SG, giving source and target
boundaries of each box.

Diagrammatically, a monoidal graph can be pictured as a collection of boxes,
labelled by elements of BG with strings entering on the left and exiting on
the right, labelled by types given by the source and target functions s, t. For
example, Figure 1 depicts the monoidal graph G with BG = {γ, γ′}, SG =
{A,B}, s(γ) = AB, t(γ) = ABA, s(γ′) = A, t(γ′) = BB:

A

B
γ

A
B
A

A γ′ B

B

Figure 1: Example of a monoidal graph. Monoidal graphs form the building blocks of string
diagrams: a diagrammatic notation for morphisms in monoidal categories.

Given that we are interested in finite state machines over finite alphabets,
we shall work exclusively with finite monoidal graphs, i.e. those in which BG
and SG are both finite sets. We call s(γ) and t(γ) the arity and coarity of γ,
respectively, of a box γ. We will write γ : s(γ) → t(γ) when considering a
box along with its source and target types. These are the generators of (free)
monoidal categories, and so we also call them generators.

Definition 3.2. A strict monoidal category is a category C, equipped with a
functor ⊗ : C × C → C (the monoidal product) and a unit object I ∈ C, such
that ⊗ is associative and unital: A⊗(B⊗C) = (A⊗B)⊗C and A⊗I = A = I⊗A
for all objects A,B,C.

The monoidal product turns the sets of objects and morphisms in C into
monoids.

Definition 3.3. A pro is a strict monoidal category whose monoid of objects
is a free monoid (whose generators are sorts).

Although the data of a strict monoidal category can seem intimidating to the
non-expert, they admit an intuitive graphical calculus of string diagrams. Given
a monoidal graph, we can construct the free pro on it using string diagrams,
generated by the diagrammatic presentation of the monoidal graph:
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Definition 3.4. The free pro FG on a monoidal graph G has monoid of objects
S∗
G and morphisms string diagrams inductively defined as in Figure 2. The

monoidal product (⊗) is given on objects by concatenation, on diagrams by
juxtaposition, and the unit is the empty word. Composition (#) is given by
joining wires. Note that, since we give a presentation via string diagrams rather
than terms, the reader may verify that the required equations hold automatically.
Specifically, these are: the associativity and unitality of the monoidal product,
the associativity and unitality of composition, and the interchange law: (d1 ⊗
d2) #(d3 ⊗ d4) = (d1 # d3) ⊗ (d2 # d4) whenever these composites exist.

α ∈ B𝒢

...... α

 A∈S𝒢

A A
A1

An

B1

Bm

A2 B2

...... d2

C1

Cp

D1

Dq

C2 D2...... d1

A1

An

B1

Bm

A2 B2

...... d2

C1

Cp

D1

Dq

C2 D2

...... d1

A1

An

B1

Bm

A2 B2

...... d1

A1

An

B1

Bm

A2 B2 ...... d2

D1

Dq

D2d3

B1

Bm

B2

...... d1

A1

An

A2 ...d3

D1

Dq

D2

Figure 2: Inductive definition of morphisms in the free pro on a monoidal graph. Left to
right: the empty string diagram is a string diagram (emphasized here with a dotted box); for
each sort, the identity string is a string diagram; the string diagram for every generator α is
a string diagram; for any two string diagrams their vertical juxtaposition is a string diagram;
and for any two string diagrams with matching right and left boundaries, the string diagram
obtained by joining the matching wires is a string diagram (their composition).

The basic idea is straightforward: we treat generators like circuit compo-
nents that we can plug together in series, or place in parallel. String diagrams
are topological objects: they are invariant up to planar isotopy. Furthermore,
they are sound and complete: an equation between morphisms of strict monoi-
dal categories follows from their axioms if and only if it holds between string
diagrams up to planar isotopy [23, 35]. The structural equations of strict mo-
noidal categories such as associativity and unitality of tensor hold automatically
in string diagrams, and this often leads to shorter, less bureaucratic proofs.

Since the monoidal unit is the empty word (denoted 0 when G is single
sorted, and by ε in general), morphisms from or to the monoidal unit are string
diagrams with no “dangling wires” on their left or right, respectively. Note that
when G is single-sorted, we do not need labels on the strings. Alphabets for
monoidal languages will be single-sorted finite monoidal graphs: we call such
monoidal graphs monoidal alphabets.

We will make extensive use of morphisms of monoidal graphs:

Definition 3.5. A morphism Ψ : G′ → G of monoidal graphs is a pair of
functions SΨ : SG → SG′ , BΨ : BG → BG′ such that S∗

Ψ ◦ s = s ◦ BΨ and
S∗
Ψ ◦ t = t ◦BΨ, where S∗

Ψ is the unique monoid homorphism determined by SΨ.
Graphically, a morphism of monoidal graphs acts as follows:

......

A1

An

B1

Bm

A2 B2γ ......

Ψ(A1)

Ψ(An)

Ψ(B1)

Ψ(Bm)
Ψ(A2) Ψ(B2)Ψ(γ)↦
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Monoidal graphs and their morphisms form a category MonGraph. Moreover,
just as a monoidal graph freely generates a pro, a morphism of monoidal graphs
freely generates a morphism of pros. Recall that a strict monoidal functor is a
functor F : C → D, where C and D are monoidal categories, and F (X ⊗ Y ) =
F (X) ⊗ F (Y ), F (IC) = ID. A morphism of pros is simply a strict monoidal
functor whose action on objects is determined by a function between their sets
of generating sorts.

A pro has an underlying monoidal graph, given by forgetting composition
and monoidal product:

Definition 3.6. The underlying monoidal graph U M of a pro M is defined to
have SU M the set of generators of the monoid of objects of M , and BU M =⋃
Mor(M), the morphisms of M with s, t : BU M ⇒ S∗

U M assign each morphism
its source and target sorts.

There is a “free-forgetful” adjunction F ⊣ U : Pro → MonGraph (see for
example, [25, Proposition 6.1]). We will use this later in Section 6 to define
inductive extensions of monoidal automata.

Remark 3.7. In the introduction we remarked that strict monoidal categories
might also be seen as 2-dimensional monoids, and hence a natural candidate for
the algebra of higher-dimensional formal languages. In general we can define
n-monoid to mean strict n-category with one object, as in Burroni [5] who in-
troduced the word problem for n-monoids. Monoids are equivalent to one-object
categories, and moving up a dimension corresponds to introducing morphisms
between the elements of a monoid.

4. Planar Monoidal Languages and Regular Monoidal Grammars

Just as a classical word language is a subset of a finitely generated free
monoid, a monoidal language is a set of morphisms in a finitely generated free
pro. In particular, we are interested in the scalar morphisms: those from the
monoidal unit to itself, in other words, string diagrams with no dangling wires.
Recall that a monoidal alphabet is defined to be single-sorted finite monoidal
graph.

Definition 4.1. A planar monoidal language L over a monoidal alphabet Γ is
a subset L ⊆ FΓ(0, 0) of morphisms with arity and coarity 0 in the free pro
generated by Γ.

The restriction to arity and coarity zero (i.e. scalar) morphisms may appear
arbitrary. However, we will see in Section 7 that this captures and explains the
classical definitions of finite-state automata over words and trees. It also leads to
more concise definitions in our theory. We will usually drop the qualifier planar,
since they are the main object of investigation. In Section 12 we highlight some
work in progress on symmetric monoidal languages, which permit non-planar
string diagrams.
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Regular monoidal grammars specify a class of monoidal languages analogous
to regular languages. The starting point of our definition of regular monoidal
grammar and their associated monoidal languages is inspired by Walters [39],
so we briefly explain his elegant idea.

Walters [39] introduced an algebraic definition of regular grammars as mor-
phisms of finite graphs. It is commonplace to represent finite-state automata as
labelled directed graphs and this is the starting intuition. A labelled directed
graph can be seen as a morphism of graphs ϕ : G → Σ, from a graph G whose
vertices are states and edges transitions to a graph Σ with one vertex whose
edges are labels. A morphism of graphs is a function on edges and a function on
vertices, commuting with source and target assigments. On vertices a morphism
G → Σ is trivial: it must send every state to the single vertex of Σ. On edges
of G, it assigns labels, which are elements of the alphabet.

Following Walters, such a morphism is called a grammar rather than an
automaton, because Σ appears in the codomain: when we consider Σ as a set
of inputs for an automaton, it should (and will, in Definition 6.1) appear in
the domain of a morphism. Roughly speaking, a grammar is fibered over the
alphabet, whereas in an automaton the alphabet indexes transitions.

There are many advantages to this innocent reframing of grammars as mor-
phisms of graphs when it comes to language theory. It allows us to neatly
describe operations on grammars, such as in proving closure operations in Sec-
tion 8. It suggests various generalizations, by replacing graphs with other kinds
of structure. Walters does this with multi-input, single-output graphs, obtain-
ing context-free languages using a similar construction. Using monoidal graphs
instead leads to definition of regular monoidal grammars:

Definition 4.2. A regular monoidal grammar is a morphism of monoidal
graphs Ψ : M → Γ where M is finite, and Γ is a monoidal alphabet.

Intuitively, a regular monoidal grammar is a labelling of the edges of M by
generators in Γ. Indeed, since Γ is single-sorted, the sort function Ψ : SM → {•}
is unique, and the grammar is determined by its box function BΨ : BM → BΓ,
sending boxes to their labels. In Section 6 we show that this data determines a
transition system with states words w ∈ S∗

M.
Walters’ definition also allows us to concisely describe the language associ-

ated to a grammar. A derivation in a regular grammar G → Σ corresponds
to a path in G, and the accepted word is given by the labelling of the path.
Formally, we can use the fact that any directed graph G generates a free cate-
gory FG, having objects the vertices and morphisms the paths. In particular,
the free category on a single vertex graph Σ is the free monoid over the set of
edges. Furthermore, any morphism of graphs generates a functor. If i, f are
chosen vertices of G, then the language of the grammar is simply the image of
the set of morphisms from i to f in FG under the associated functor Fϕ, giving
a subset of Σ∗.

Remark 4.3. Regular monoidal grammars determine morphisms between free
pro(p)s, FΨ : FM → FΓ. We may also refer to these morphisms as gram-
mars.
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Pros are monadic over monoidal graphs: the forgetful functor U : Pro →
MonGraph has a left adjoint F : MonGraph → Pro, and Pro is equivalent to the
category of algebras for the induced monad on MonGraph (see [20, §2.3]). F
sends a monoidal graph G to a pro FG whose set of objects is V ∗

G and whose
morphisms are string diagrams (see [35]).

For any string diagram s ∈ FΓ over an alphabet Γ, we can think of the set of
string diagrams FΨ−1(s) as a set of possible “parsings” of that diagram. From
another perspective, we can think of a string diagram s ∈ FM as represent-
ing a specification for the construction of the string diagram FΨ(s) ∈ FΓ to
which the grammar maps it: the specification is a decomposition of the desired
diagram into generators with typed boundaries that specify how they should be
composed.

Remark 4.4. We represent regular monoidal grammars diagrammatically by
drawing the monoidal graph M as above, but labelling each box b ∈ BM with
BΨ(e). The resulting diagram is not in general a diagram of a monoidal graph,
since it may contain boxes with the same label but different domain or codomain
types. Examples are given below.

4.1. Regular monoidal languages

Regular monoidal grammars specify monoidal languages that are an analogue
of classical regular languages. They can be obtained by taking Walters’ [39]
definition of regular language and replacing the adjunction between reflexive
graphs and categories with that between monoidal graphs and pros. As shown
in Section 7, they include the classical definitions of regular tree and word
languages as grammars over monoidal alphabets of a particular shape.

Regular monoidal grammars specify a subset of monoidal languages, which
specialize to the usual regular languages when M is free over a signature con-
taining 1 → 1 generators (Section 7).

A regular monoidal grammar determines a monoidal language as follows:

Definition 4.5. Given a regular monoidal grammar Ψ : M → Γ, the image un-
der FΨ of the endo-hom-set of the monoidal unit ε in FM is a planar monoidal
language FΨ[FM(ε, ε)] ⊆ FΓ(0, 0). We call the class of languages determined
by regular monoidal grammars the regular planar monoidal languages.

The basic idea is that a “word” is a scalar string diagram, i.e. one with
no “dangling strings”. The language of a monoidal grammar then consists
of those scalar string diagrams that can be given a parsing. Parsings can be
visually explained using the graphical notation for grammars (Remark 4.4). A
morphism in the language defined by a grammar is any string diagram that
can be built using the “typed” building blocks, such that there are no dangling
strings, and then erasing the types on the strings. The following examples of
regular monoidal grammars illustrate this idea:

Example 4.6 (Regular languages of words). Let Γ be a monoidal alphabet con-
taining only generators of type 1 → 1, along with “start” and “end” generators
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0 → 1 and 1 → 0 respectively. Then regular monoidal languages over such an
alphabet are exactly regular languages of words over the generators 1 → 1, and
every regular language arises from a regular monoidal grammar of this form.
We investigate this in more detail from the perspective of automata in Section
7.

Example 4.7 (Balanced parentheses). Recall that the Dyck language, the lan-
guage of balanced parentheses, is a paradigmatic example of a non-regular word
language. We can simulate recognition of the Dyck language using a regular
monoidal grammar over the following monoidal alphabet. Note that we do not
obtain exactly the classical Dyck language of words, since our “brackets” have
arities 1 → 2 and 2 → 1:

The regular monoidal grammar for balanced parentheses over this alphabet
is given in Figure 3. An example of a morphism in the language defined by this
grammar is shown on the right in Figure 3.

Figure 3: A regular monoidal grammar for balanced parentheses (left), and a morphism in
the language (right).

This illustrates how regular monoidal grammars permit unbounded concur-
rency. Here, as one scans from left to right, the (unbounded) size of the internal
boundary of a string diagram keeps track of the number of open left parentheses.

The following two examples (Examples 4.8 and 4.9) are introduced in order
to set up Example 4.10.

Example 4.8 (Brick walls). The following two colour brick alphabet allows us
to define a two-colour variant of the “brick wall” language introduced by Bossut
[4].

Figure 4 gives the grammar for two-coloured brick walls. An example of a
morphism in the language defined by this grammar is shown on the right in
Figure 4.
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Figure 4: The grammar for two-coloured brick walls (left), and a morphism in the language
(right).

Example 4.9 (XOR). The following grammar over the two colour brick al-
phabet is determined by computation of the XOR gate, based on the cellular
automaton appearing in the work of Rothemund, Papadakis, and Winfree [33]
in the context of self-assembly of DNA tiles. The output of each tile is the
duplication of the XOR of the inputs.

0

0
1 1

0

0 1

1 0

0 0

1 1

11

0 1

1

Figure 5: The XOR language grammar.

Example 4.10 (Sierpiński triangles). Rothemund, Papadakis, and Winfree [33]
introduce a cellular automaton that computes the Sierpiński triangle fractal.
This arises as the intersection of the languages generated by the grammars of
Examples 4.8 and 4.9. The corresponding monoidal grammar is given in Figure
6.

H1

V1

H1

V1

V0

H0

H0

V0

V0

H0

H0

V1

V1

H1

H1

V0

V1

H1

V1

H1

Figure 6: The regular monoidal grammar of Sierpiński triangles.

Figure 7: An element of the regular monoidal language of Sierpiński triangles.

Example 4.11. Consider the following monoidal alphabet:
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δ
α

β
γ

The grammar over this alphabet in Figure 8 has a language whose elements
with one connected component are exactly two (Figure 9). This grammar will
serve as a running counterexample in Sections 10 and 11, as it defines a language
that cannot be deterministically recognized (Figure 8). In particular it does not
satisfy the property of causal closure, a necessary condition for deterministic
recognizability which we introduce in Section 10.

δ
α

β

A

A

B

C
γ

A

A

B

C
γ

A

A

C

B

Figure 8: This grammar is “non-deterministic”: there are two possible transitions from the
empty word when encountering γ.

γ δ
α

β
γ δ

α

β

Figure 9: The connected string diagrams in the language of Figure 8.

Again, in this paper we will often drop “planar” and just speak of regular
monoidal languages, since all of the languages treated here are planar. We shall
see in Section 6 that regular monoidal languages are precisely the languages
accepted by non-deterministic monoidal automata.

Remark 4.12. If the monoidal graph M has no edges whose domain is ε or no
edges whose codomain is ε, a regular monoidal grammar will define a language
containing only the identity on the monoidal unit, i.e. the empty string diagram
(denoted ). In fact, every monoidal language contains the empty string
diagram.

5. Pumping lemma for regular monoidal languages

In this section we prove a pumping lemma for regular monoidal languages
(Lemma 5.1). We use this lemma to show that the language of unbraids is a
monoidal language which is not regular monoidal.

Lemma 5.1 (Monoidal pumping lemma). Let L be a regular monoidal language.
Then ∀k ∈ N+,∃n > 0 such that for any w ∈ L where w may be factorized (as
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follows) into m ⩾ n morphisms with boundaries (ki−1, ki) of width 1 ⩽ ki ⩽ k
and such that no wi is an identity morphism:

wmwi ki

... }...ki-1 } ...

...

km-1 }... ...w0 ...

...
k0} ......

there exists i < j such that ki = kj = ℓ and

w'''w'' ℓ

... }...ℓ }w'
... ( ( ...

p

∈ L,∀p ⩾ 0

where (w′′)p in the diagram indicates sequential repetition of w′′, p times,
and w′ = w0; ...;wi, w

′′ = wi+1; ...;wj, and w′′′ = wj+1; ...;wm.

Proof. Let L be the language of the grammar φ : M → Γ. If L has a finite
number of connected elements, then for any k take n to be longer than the
longest factorization over all diagrams in L, then the lemma holds vacuously.
Otherwise let k be given, then take n =

∑k
i=0 |SM |i, where |SM | is the number

of sorts in M . Let w ∈ L, such that it has a factorization of the form above.
The chosen n guarantees that some vector of sorts (S1, ..., Ski) where Sl ∈ SM

must be repeated when generating w according to the grammar. That is, by
the pigeonhole principle, we will have i, j, ℓ as required in the lemma.

Corollary 5.2 (Contrapositive form). Let L be a monoidal language and sup-
pose that ∃k ∈ N+ such that ∀n > 0 there exists a morphism w ∈ L that
factorizes as above and for all i < j such that ki = kj = ℓ, there exists a p such
that the pumped morphism w′w′′pw′′′ /∈ L, then L is not regular monoidal.

Observation 5.3. This reduces to the usual pumping lemmas for words and
trees, when φ is a regular word or regular tree grammar (Example 7), taking
k = 1.

We can use the monoidal pumping lemma to prove that languages of “un-
braids” on n-strings, considered as monoidal languages, are not regular monoi-
dal. The “crossing” generators in the following are syntax for braidings: under-
and over- crossings of strings, allowing them to tangle.

Definition 5.4 (Unbraid languages). The language of unbraids on m ⩾ 2
strings, Unbraidm, is a monoidal language defined over a monoidal alphabet
with an under-braid, over-braid, and start, end generators with k prongs for
0 ⩽ k ⩽ m. For example, taking m = 4 we have the alphabet in Figure 10.

Figure 10: Monoidal alphabet for Unbraid4.
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Connected elements of Unbraidm are defined to be string diagrams with one
start and one end generator, between which there is a configuration of at most
m strings which could be “unbraided” to give two parallel strings, by planar
isotopy. For example, Figure 11 (left) is an element of Unbraidm for all m ⩾ 2,
but Figure 11 (right) is not. The non-connected elements of the language are
tensor products (juxtapositions of string diagrams) of these connected elements.

Figure 11: (Left) Example of an element in Unbraidm: by it could be untangled by planar
deformations. (Right) An string diagram not in Unbraidm: we cannot uncross the strings
using only planar moves.

To prove that Unbraidm is not regular monoidal, we will make use of the
following regular monoidal language:

Definition 5.5 (Over-under language on two strings). (O∗U∗ + U∗O∗)2 is the
regular monoidal language whose connected elements are an arbitrary number of
over-braidings of two strings followed by an arbitrary number of under-braidings
of two strings, or vice-versa. A grammar for this language is the following:

A

B

A

B

A

B

A

B

C

D

C

D

C

D

C

D

E

F

E

F

E

F

G

H

E

F

G

H

G

H

G

H

A

B

Figure 12: A regular monoidal grammar for the monoidal language (O∗U∗ + U∗O∗)2.

Proposition 5.6. The languages Unbraidm (m ⩾ 2) are not regular monoidal.

Proof. Consider the intersection Unbraidm ∩ (O∗U∗ + U∗O∗)2. An element of
(O∗U∗ + U∗O∗)2 is an unbraid just when it comprises p under-braidings fol-
lowed by p over-braidings, or vice-versa and thus these are the elements of the
intersection, which we denote by (OpUp +UpOp)2. Figure 12 witnesses the reg-
ularity of (O∗U∗ + U∗O∗)2, and the intersection of regular monoidal languages
is regular (Lemma 8.2), thus it will suffice to prove that L = (OpUp + UpOp)2
is not regular monoidal.

We use Corollary 5.2. Let k = 2 and n > 0 be given, and let w ∈ L be the
connected element having n over-braidings (O) followed by n under-braidings
(U), with factorization w = OnUn. Finally let i < j be given (all i, j satisfy
ki = kj = 2). Then we have three cases for the pumping section w′′: either it
consists of j − i Os, j − i Us, or some number of Os followed by some number
of Us. In the first two cases, pumping the section leads to a term with more Os
than Us or vice-versa, and in the last case it will no longer be that all Os come
before all Us.
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Remark 5.7. Proposition 5.6 raises the question of whether context-free monoi-
dal languages could be defined. Alongside his algebraic definition of regular gram-
mar, Walters [39] introduced a similar definition of context-free grammar using
the notion of multicategory. This has been revisited in the recent work of Melliès
and Zeilberger [26], who gave a conceptual proof of the Chomsky-Schützenberger
representation theorem using the algebra of multicategories. Earnshaw, Hefford,
and Román [15] recently extended this algebra to the setting of monoidal cate-
gories, providing a foundation for a notion of context-free monoidal grammar
to be pursued in future work.

6. Non-deterministic monoidal automata

Recall that a non-deterministic finite automaton (NFA) is given by a finite
set Q of states, an initial state i ∈ Q, a set of final states F ⊆ Q, and for each

a ∈ Σ, a function Q
∆a−−→ P(Q). Automata accepting monoidal languages, or

monoidal automata are defined similarly, but the type of the transition function
will be different for each generator γ ∈ Γ: for γ : n → m, we have a transition

function Qn ∆γ−−→ P(Qm), taking vectors of states to (sets of) vectors of states.
Our monoidal automata do not have initial and final states; these are ef-

fectively taken over by transitions corresponding to generators of arity 0 and
coarity 0, respectively. This corresponds to our languages consisting of scalar
string diagrams; those with no dangling wires. For example, Figure 13 illus-
trates an accepting run over the automaton corresponding to the grammar of
Example 4.7.

Figure 13: A run in the monoidal automaton for balanced parentheses.

A label next to a wire indicates the state “carried” by that wire. The
accepted term is what is left if we erase these labels. In this example, the state
vector undergoes the following transformations ε → A → (A,B) → (A,B,B) →
(A,B) → A → ε. We now proceed to the formal definitions.

Definition 6.1. A non-deterministic monoidal automaton over a monoidal al-
phabet Γ comprises:

• a finite set of states Q,

• for each generator γ : n → m in Γ, a transition function ∆γ : Qn →
P(Qm).

In Section 7, we will see that initial and final states for regular and tree
automata derive from this definition, when the alphabet is of a particular shape.
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For classical NFAs, the assignment a 7→ ∆a extends uniquely to a functor Σ∗ →
Rel, the inductive extension of the transition structure from letters to words.
Similarly, every non-deterministic monoidal automaton determines a monoidal
language.

We define the inductive extension of monoidal automata from generators to
string diagrams. First recall the definition of the endomorphism pro of an object
in a monoidal category:

Definition 6.2. Let C be a monoidal category, and Q an object of C . The endo-
morphism pro of Q, CQ, has natural numbers as objects, hom-sets CQ(n,m) :=
C (Qn, Qm), composition and identities as in C . The monoidal product is addi-
tion on objects, and as in C on morphisms.

The codomains of our inductive extension will be endomorphism pros of finite
sets Q in Rel, the Kleisli category of the powerset monad P. The morphisms
X → Y in this Kleisli category are functions X → P(Y ), which we think of
as relations between sets X and Y . Since P is a commutative monad (with
respect to the cartesian product of sets, with PX × PY → P(X × Y ) given
by the product of subsets), the following lemma gives us the monoidal structure
on Rel:

Lemma 6.3 ([30], Corollary 4.3). Let T be a commutative monad on a sym-
metric monoidal category C . Then the Kleisli category Kl(T ) has a canonical
monoidal structure, which is given on objects by the monoidal product in C , and

on morphisms f : X → TA, g : Y → TB by X⊗Y
f⊗g−−−→ TA⊗TB

∇−→ T (A⊗B),
where ∇ is the monoidal multiplication given by the commutativity of T .

For the powerset monad, the monoidal product ⊗ is the cartesian product
of sets, and monoidal multiplication ∇ is given by the cartesian product of sets.

Definition 6.1 amounts to a morphism of monoidal graphs from Γ, to the
underlying monoidal graph of the endomorphism pro RelQ, defined as follows:

Definition 6.4. Let Q be a set of states, then RelQ is the pro with:

• set of objects N,

• morphisms n → m are functions Qn → P(Qm),

• composition is Kleisli composition, i.e. the usual composition of relations
f ◦ g := µ ◦ P(g) ◦ f , where µ takes the union of subsets,

• monoidal product of objects given by addition, and

• monoidal product of morphisms f : n → m and g : p → q by ∇ ◦ (f × g) :
n + p → m + q, where ∇ is the monoidal multiplication of P, i.e. the
cartesian product of sets.

Remark 6.5. The maybe monad (–)⊥ is also commutative, so its Kleisli cate-
gory also has a canonical monoidal structure. The objects of this category are
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sets, and the morphisms X → Y are functions X → Y + {⊥}, which we think
of as partial functions X → Y . The canonical monoidal structure is given on
objects by the cartesian product of sets and on morphisms by first taking their
cartesian product, then collapsing (⊥,⊥) to ⊥. We return to this in Section
10. Stochastic monoidal automata could be obtained by use of the distribution
monad [27], whose Kleisli category has stochastic matrices as morphisms.

Now we can define the inductive extension of a non-deterministic monoidal
automaton:

Observation 6.6. The assignment of generators to transition functions γ 7→
∆γ in Definition 6.1 determines a morphism of monoidal graphs Γ → U (RelQ).
By the adjunction F ⊣ U (Section 4), such morphisms are in bijection with
pro morphisms ∆ : FΓ → RelQ. We will also refer to the inductive extension
∆ as a non-deterministic monoidal automaton, and sometimes write ∆α for the
relation ∆(α : n → m).

A scalar string diagram is mapped to one of the two possible nullary relations
{•} → P({•}), which represent accepting or rejecting computations, and thus
can be used to define the language of the automaton:

Definition 6.7. Let ∆ : FΓ → RelQ be a non-deterministic monoidal automa-
ton. Then the monoidal language accepted by ∆ is L (∆) := {α ∈ FΓ(0, 0) |
∆α(•) = {•}}.

There is an evident correspondence between non-deterministic monoidal au-
tomata and regular monoidal grammars. The graphical representation of a
grammar makes this most clear: it can also be thought of as the “transition
graph” of a non-deterministic monoidal automaton. More explicitly we have:

Proposition 6.8. Given a regular monoidal grammar Ψ : M → Γ, define a
monoidal automaton with Q = SM, w(∆γ)w′ ⇐⇒ ∃σ ∈ B−1

Ψ (γ) such that
s(σ) = w, t(σ) = w′. Conversely given a monoidal automaton (Q,∆Γ), define
a regular monoidal grammar with SM = Q and take an edge w → w′ over γ
⇐⇒ w(∆γ)w′. This correspondence of grammars and automata preserves the
recognized language.

7. Regular word and tree languages as regular monoidal languages

Classical non-deterministic finite-state automata and tree automata can be
seen as non-deterministic monoidal automata over alphabets of a particular
shape.

To make the correspondence precise, in the following we restrict monoidal
languages to their connected string diagrams. Strictly speaking, the language
of a monoidal automaton always contains only the empty diagram or is count-
ably infinite, because if α is accepted by the automaton, so are arbitrary finite
monoidal products α⊗ · · · ⊗ α. However, it is of course possible for a monoidal
language to consist of a finite number of connected string diagrams.
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From another perspective, without restricting to connected components, we
can say that the monoidal automata corresponding to finite-state and tree au-
tomata have the power of an unbounded number of such classical automata
running in parallel.

7.1. Finite-state automata

Definition 7.1. A word monoidal alphabet is a monoidal alphabet having only
generators of arity and coarity 1, σ , along with a single “start” generator

of arity 0 and coarity 1, and “end” generator of arity 1 and coarity 0.

Observation 7.2. Non-deterministic monoidal automata over word monoidal
alphabets correspond to classical NFAs.

Let an NFA A = (Q,Σ,∆, i, F ) be given. We build a monoidal automaton as
follows. Form the monoidal alphabet Σ′ by starting with generators , and
adding generators σ for each σ ∈ Σ. For each σ , take the transition
function ∆σ := ∆(σ, –) : Q → P(Q). For take the transition function
Q → P(Q0) to be the characteristic function of F ⊆ Q, sending elements of F
to {•} and to ∅ otherwise, and for take the function Q0 → P(Q) to pick
out the singleton {i}. This defines a monoidal automaton A′ := (Q,∆′

Σ′), and
a simple induction shows that L (A) = L (A′), if one restricts to connected
string diagrams.

Conversely, the data of a monoidal automaton over a word monoidal alpha-
bet corresponds to the data of an NFA, the only difference being that the tran-
sition function associated to picks out a set of initial states {•} → P(Q).
We can always “normalize” such an automaton into an equivalent NFA with
one initial state (see [34, §2.3.1]). This shows how NFA initial and final states
are captured by this particular shape of monoidal alphabet.

7.2. Tree automata as monoidal automata

Recall that non-deterministic finite tree automata come in two flavours,
bottom-up and top-down, depending on whether they process a tree starting
at the leaves or at the root, respectively. A non-deterministic bottom-up fi-
nite tree automaton is given by a finite set of states Q, a “ranked” alphabet
(Σ, r : Σ → N), a set of final states F ⊆ Q, and for each σ ∈ Σ a transi-
tion function ∆σ : Qr(σ) → P(Q). A non-deterministic top-down tree au-
tomaton, instead, has a set of initial states I ⊆ Q and transition functions
∆σ : Q → P(Qr(σ)). We can recover these as non-deterministic monoidal
automata over tree monoidal alphabets:

Definition 7.3. A top-down tree monoidal alphabet is a monoidal alphabet

having only generators of arity 1 (and arbitrary coarities ⩾ 0), σ ... , along
with a single “root” generator . Analogously, a bottom-up tree monoidal
alphabet is a monoidal alphabet having only generators of coarity 1 (and arbitrary

arities ⩾ 0), σ... , along with a single “root” generator .
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Observation 7.4. Bottom-up tree automata are exactly non-deterministic mo-
noidal automata over bottom-up tree monoidal alphabets, and likewise for top-
down tree automata.

Of course, when the coarities of the generators in a top-down tree alphabet
are all 1 (or likewise for the arities of a bottom-up tree alphabet), trees are just
words, and we obtain finite-state automata over words.

For example, consider the following graph of a monoidal automaton over a
bottom-up tree monoidal alphabet, recognizing trees corresponding to terms of
the inductive type of lists of boolean values (a list may be empty, [], or be a
boolean value “consed” onto a list via ::).

::
ft [] L LVV

L
V

L

Figure 14: Transition graph of a monoidal automata for a tree language, accepting trees
corresponding to lists of boolean values.

Intuitively, the connected scalar string diagrams determined by this language
are trees, with leaves on the left, and the root on the right. Monoidal automata
over top-down tree monoidal alphabets have a similar form, but are mirrored
horizontally. Thus morphisms in the language have the root on the left, leaves
on the right, and monoidal automata start at the root.

8. Closure properties of regular monoidal languages

We record some closure properties of regular monoidal languages, making
use of their representation as grammars and as automata, where appropriate.

Lemma 8.1 (Closure under union). Let L and L′ be regular monoidal languages
over Γ. Then L ∪ L′ is a regular monoidal language over Γ.

Proof. Let L and L′ be given by the regular monoidal grammars Ψ : M →
Γ,Ψ′ : M′ → Γ respectively. Define the grammar Ψ + Ψ′ : M + M′ → Γ,
where BM+M′ := BM + BM′ , SM+M′ := SM + SM′ , and BΨ+Ψ′ := [Ψ,Ψ′]
(the copairing of Ψ and Ψ′). Graphically, this is just taking the disjoint union
of two grammars, and it is clear that the language defined in this way is the
union of the languages defined by the two grammars.

Lemma 8.2 (Closure under intersection). Let L and L′ be regular monoidal
languages over Γ. Then L ∩ L′ is a regular monoidal language over Γ.

Proof. Let L and L′ be recognized by non-deterministic automata (Q, {∆γ}γ∈Γ),
(Q′, {∆′

γ}γ∈Γ) respectively. Consider the product automaton (Q × Q′, {(∆ ×
∆′)γ}γ∈Γ, with (∆ × ∆′)γ := ∇ ◦ (∆γ × ∆′

γ), where ∇ maps pairs of subsets
to their cartesian product. Then α is accepted by the product automaton just
when it is accepted by both, so L (∆ × ∆′) = L ∩ L′.
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Remark 8.3. The Sierpiński triangle language (Example 4.10) is the intersec-
tion of the brick wall language (Example 4.8) the XOR language (Example 4.9):
this explains the origin of the states in the grammar shown in Example 4.10.

Lemma 8.4 (Closure under monoidal product and factorizations). Let L be a
regular monoidal language. Then α, β ∈ L ⇐⇒ α⊗ β ∈ L.

Proof. Let (Q, {∆γ}γ∈Γ) be an automaton accepting both α and β. Since the
inductive extension ∆ is a strict monoidal functor, ∆(α ⊗ β) = ∆(α) ⊗ ∆(β),
so we must have ∆(α⊗ β)(•) = {•}, and conversely.

Lemma 8.5 (Closure under images of alphabets). Let L be a regular monoidal

language over Γ, and Γ
h−→ Γ′ be a morphism of monoidal alphabets. Then

(Fh)L is a regular monoidal language over Γ′.

Proof. Let L be given by the regular monoidal grammar Ψ : M → Γ, that is L =
FΨ[FM(ε, ε)]. Consider the grammar given by the composite h◦Ψ : M → Γ′.
Since F is a functor we have: F (h ◦Ψ)[FM(ε, ε)] = (Fh ◦FΨ)[FM(ε, ε)] =
(Fh)L, thus h ◦ Ψ is a grammar for (Fh)L.

Lemma 8.6 (Closure under preimages of alphabets). Let L a regular monoidal

language over Γ, and Γ′ h−→ Γ be a morphism of monoidal alphabets. Then the
inverse image of L, (Fh)−1(L) is a regular monoidal language over Γ′.

Proof. Let (Q, {∆γ}γ∈Γ) be an automaton recognizing L with inductive ex-
tension ∆ : FΓ → RelQ. Consider the automaton given by the composite
∆ ◦ Fh : FΓ′ → RelQ. We have L (∆ ◦ Fh) = (Fh)−1(L (∆)) = (Fh)−1(L),
so the inverse image of L is regular.

Closure under complement is often held to be an important criterion for
what should count as a recognizable language. Indeed, for the abstract monadic
second order logic introduced in [3], it is a theorem that the class of recogniz-
able languages relative to a monad on Set is closed under complement. However,
given that every monoidal language contains the empty string diagram, we ob-
viously have that:

Observation 8.7. Regular monoidal languages are not closed under comple-
ment.

This suggests that there is no obvious account of regular monoidal languages
in terms of monadic second order logic. On the other hand, there is no reason
we should expect even the general account of monadic second order logic given
in [3] to extend to monoidal categories, since these are not algebras for a monad
on Set. Moreover, taking inspiration from classical examples in Section 7, one
could also refine what is meant by complement, for instance focussing on the
set of non-empty connected scalar diagrams.
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9. The syntactic pro of a monoidal language

In this section we introduce the syntactic congruence on monoidal languages
and their corresponding syntactic pros, by analogy with the syntactic congru-
ence on classical regular languages and their associated syntactic monoids. In
Section 10.1 we will give an algebraic property of the syntactic pro sufficient for
a monoidal language to be deterministically recognizable. The syntactic congru-
ence on a classical regular language is defined by examining words in contexts.
We start by introducing a notion of context for string diagrams.

Definition 9.1. A context of capacity (n,m) in a monoidal category C where
n,m ⩾ 0, is a scalar string diagram with a hole (Figure 15) with zero or more
additional strings exiting the first box and entering the second (indicated by
ellipses in Figure 15).

...

......α β}n m{

...

Figure 15: A context of capacity (n,m). α and β stand for arbitrary string diagrams with
arity and coarity 0, respectively.

Given a context of capacity (n,m) in C, we can fill the hole with a string
diagram γ : n → m in C. Write C[γ] for the resulting morphism of C. Note that
the empty diagram is a context, the empty context of capacity (0, 0). Contexts
allow us to define contextual equivalence of string diagrams:

Definition 9.2 (Syntactic congruence). Given a monoidal language L we define
its syntactic congruence ≡L as follows. Let γ, δ be morphisms in FΓ(n,m).
Then γ ≡L δ whenever C[γ] ∈ L ⇐⇒ C[δ] ∈ L, for all contexts C in FΓ of
capacity (n,m).

Definition 9.3. The syntactic pro of a monoidal language L is the quotient pro
FΓ/≡L. The quotient functor SL : FΓ → FΓ/≡L is the syntactic morphism
of L. See Appendix A for the definition of quotient pro and quotient functor.

Remark 9.4. The syntactic congruences for classical regular languages of words
and trees are also special cases of this congruence over word and tree monoidal
alphabets.

Lemma 9.5. L is the inverse image along the syntactic morphism of the equiv-
alence class of the empty diagram.

Proof. Let α ∈ L. Then α ≡L , since the empty diagram is in every language

and if C is a context of capacity (0, 0) distinguishing α and , then we have

a contradiction by Lemma 8.4, since α = α ⊗ . So α ∈ S−1
L (

[ ]
), and

conversely.
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In the terminology of algebraic language theory, we say that the syntactic
morphism recognizes L. A full investigation of algebraic recognizability of mo-
noidal languages is a topic for future work. For now, we record the following
lemma which is needed for Theorem 10.11:

Lemma 9.6. If a monoidal language L is regular, then its syntactic pro FΓ/≡L

is locally finite (i.e. has finite hom-sets).

Proof. It suffices to exhibit a full pro morphism into FΓ/≡L from a locally
finite pro. Let L be a regular monoidal language recognized by ∆ : FΓ → RelQ.
∆ induces a congruence ∼ on FΓ defined by α ∼ β ⇐⇒ ∆(α) = ∆(β), which
implies that FΓ/∼ is locally finite, since RelQ is locally finite. Define the pro
morphism FΓ/∼ → FΓ/≡L to be identity on objects and [α]∼ 7→ [α]≡L

on
morphisms. This is well-defined since if α ∼ β and C[α] ∈ L for some context C,
then by functoriality C[β] ∈ L. Clearly it is full, so FΓ/≡L is locally finite.

10. Deterministic monoidal automata

The expressive equivalence of deterministic and non-deterministic finite-state
automata for word languages is well-known, but already for trees, top-down de-
terministic tree automata are less expressive than bottom-up deterministic tree
automata [21]. Therefore we cannot expect to determinize non-deterministic
monoidal automata. However, we have already seen monoidal languages that
are deterministically recognizable: Examples 4.8 and 4.10, interpreted as the
transition relations of monoidal automata, are functional relations. Here we
introduce deterministic monoidal automata and show that their languages en-
joy the property of causal closure. In Section 11 we consider the question of
determinizability.

Definition 10.1. A deterministic monoidal automaton δ = (Q, δΓ) over a mo-
noidal graph Γ is given by a finite set Q, together with transition functions

δΓ = {Qar(γ) δγ−→ Q
coar(γ)
⊥ }γ∈Γ, where Q⊥ denotes the set Q + {⊥}.

We write Par for the Kleisli category of the maybe monad Q 7→ Q⊥, whose
morphisms we think of as partial functions. As mentioned in Remark 6.5, this
category is equipped with a monoidal structure, given on objects by the cartesian
product of sets. Recall from Definition 6.2 the notion of endomorphism pro of
an object in a monoidal category. In the case of a set Q in Par, we have an
endomorphism pro ParQ whose objects are natural numbers and morphisms
n → m are functions Qn → Qm

⊥ .
Then as in Observation 6.6, such assignments γ 7→ δγ uniquely extend to

morphisms of pros δ : FΓ → ParQ, and we will also refer to such functors
as deterministic monoidal automata. δ maps scalar string diagrams to one of
the two functions Q0 → Q0

⊥, and we use this to define the language of the
automaton:

Definition 10.2. Let δ : FΓ → ParQ be a deterministic monoidal automaton.
Then the language accepted by δ is L (δ) := {α ∈ FΓ(0, 0) | δα(•) = •}.
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We give a necessary condition for a monoidal language to be recognized by
a deterministic monoidal automaton. The idea is to generalize the characteriza-
tion of top-down deterministically recognizable tree languages as those that are
closed under the operation of splitting a tree language into the set of possible
paths through the trees, and reconstituting trees by grafting compatible paths
[21]. For string diagrams, we call the analogue of paths through a tree the causal
histories of a diagram (Definition 10.7).

First, we briefly recall the machinery of (cartesian) restriction categories [8],
that will be necessary in the following. Restriction categories are an abstraction
of the category of partial functions, and provide us with a diagrammatic calcu-
lus for reasoning about determinization of monoidal languages. Recall that a
prop is a pro which is additionally equipped with a natural family of symmetry
morphisms σA,B : A⊗B → B ⊗A for every pair of objects [24].

Definition 10.3 (Cockett and Lack, Theorem 5.2 [9]). A cartesian restriction
category may be defined as a counital copy category: a symmetric monoidal
category in which every object is equipped with a commutative comonoid struc-

ture (with the counit depicted by , comultiplication by , and symmetry

by ) that is coherent, and for which the comultiplication is natural (see Ap-
pendix B for details).

Proposition 10.4 ([14]). The free cartesian restriction prop on a monoidal
graph M, denoted F↓M is given by taking the free prop on the monoidal graph
M extended with a comultiplication and counit generator for every object in
VM, and quotienting the morphisms by the structural equations of cartesian
restriction categories (Appendix B).

Remark 10.5. Par is the paradigmatic example of a cartesian restriction cate-
gory, with on X given by the function X → {•,⊥} sending every element to

•, and given by the diagonal function q 7→ (q, q). ParQ inherits this struc-

ture and so is a cartesian restriction prop. Therefore deterministic monoidal
automata (Q, δΓ) also have inductive extensions to morphisms of cartesian re-
striction props, δ : F↓Γ → ParQ, and these have a obvious notion of associated
language, defined similarly to Definition 10.2. These are related by the following
lemma, which follows from the universal properties of FΓ and F↓Γ:

Lemma 10.6. If (Q, δΓ) is a deterministic monoidal automaton, then δ factors
through δ as δ = δ ◦ HΓ, where HΓ : FΓ → F↓Γ sends morphisms to their
equivalence class in F↓Γ.

The idea is that runs in the automaton F↓ can freely duplicate ( ) or

delete ( ) an element in the state vector at any point in the run.
Recall that any restriction category is poset-enriched: f ⩽ g if f is “less

defined” than g, i.e. if f coincides with g on f ’s domain of definition [8, §2.1.4].
For the hom-set from the monoidal unit to itself, we have f ⩽ g ⇐⇒ f⊗g = f .
Now we can define causal histories:
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Definition 10.7. Let γ be a string diagram in FΓ(0, 0). We call a string
diagram h in F↓Γ(0, 0) a causal history of γ if HΓ(γ) ⩽ h in F↓Γ(0, 0). Let
L ⊆ FΓ(0, 0) be a regular monoidal language. The set of causal histories of L,
denoted ch(L), is defined to be HΓ(L)↑, the upwards closure of HΓ(L) in the
poset F↓Γ(0, 0).

A causal history represents the possible causal influence of parts of a diagram
on generators appearing “later” in the diagram. For example, the following
five string diagrams are causal histories of the rightmost string diagram below
(every diagram is a causal history of itself), taken from the language introduced
in Example 4.11:

γ δγ γ δ
β β

γ δ
α

γ δ
α

Lemma 10.8. Let M = (Q, δΓ) be a deterministic monoidal automaton, with
functors δ : FΓ → ParQ, δ : F↓Γ → ParQ. Then if δ accepts γ, δ accepts all
causal histories of γ.

Proof. Since δ = δ ◦HΓ, if δ accepts γ, then δ accepts HΓ(γ). Let h be a causal
history of γ. Then δ(HΓ(γ)) = δ(h ⊗ HΓ(γ)) = δ(h) ⊗ δ(HΓ(γ)). But then δ
accepts h by Lemma 8.4.

Definition 10.9 (Causal closure of a language). Let L be a monoidal language
over a monoidal alphabet Γ. Let

⊗
ch(L) denote the closure of the set of causal

histories of L under monoidal product. Then the causal closure cl(L) of L is
H−1

Γ (
⊗

ch(L)). A monoidal language is causally closed if it is equal to its causal
closure.

To illustrate causal closure, consider Figure 16, which shows part of the
derivation of a morphism in the causal closure of the language of Example 4.11.

γ δ
δ

δ

γ

α

α

αγ δ
α

γ δ
α

α==

Figure 16: These string diagrams are equal in the equational theory of cartesian restriction
categories. On the left, we have the monoidal product of two causal histories of elements
of the language from Example 4.11. This determines a string diagram in the image of HΓ

(i.e. expressible without using the cartesian restriction structure), which is an element of the
causal closure of the language.
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The leftmost diagram in Figure 16 depicts the monoidal product of two
causal histories determined by the counterexample language. By the equational
theory of cartesian restriction categories (Appendix B), this is equal to the
string diagrams in the center and on the right, where we first apply the naturality

of (for γ), then unitality (twice), then naturality of (for δ). The

rightmost form of the diagram exhibits this morphism as being in the image of
HΓ, and its preimage under HΓ is the same diagram in FΓ. Since this diagram
is not in the original language, the language is not causally closed. The following
theorem tells us that this is enough to conclude that it is not recognizable by a
deterministic monoidal automaton:

Theorem 10.10. If a monoidal language is recognized by a deterministic mo-
noidal automaton, then it is causally closed.

Proof. Let L be recognized by a deterministic monoidal automaton δ : FΓ →
ParQ. We have δ = δ ◦HΓ and from Lemma 10.8 that δ accepts causal histories
of morphisms in L. Since languages are closed under monoidal product (Lemma
8.4), then by definition of the causal closure, δ must accept everything in the
causal closure of L.

10.1. An algebraic sufficient condition for deterministic recognizability

There are many interesting theorems linking properties of the syntactic
monoid of a classical language of words to properties of the language itself.
Lemma 9.6 is one result of this type for regular monoidal languages. Here we
give another, using Lemma 9.6 to characterize deterministic recognizability in
terms of the existence of extra algebraic structure on the syntactic pro:

Theorem 10.11. If the syntactic pro of a regular monoidal language has the
structure of a cartesian restriction prop, then the language is recognizable by a
deterministic monoidal automaton.

Proof. Let L be a monoidal language such that FΓ/≡L has a cartesian restric-

tion prop structure. We exhibit a pro morphism FΓ/≡L
ϕ−→ ParQ such that

FΓ
SL−−→ FΓ/≡L

ϕ−→ ParQ is a deterministic monoidal automaton accepting
exactly L.

Let Q := FΓ/≡L(0, 1). By Lemma 9.6, this is a finite set. For m > 0
and [β] ∈ FΓ/≡L(n,m), define ϕ([β]) : n → m to be the following map from
Qn → Qm

⊥ :

... ...

αₙ

...

α1 α1 α1

αn

β ...

...
...

αₙ

β

, ,

ϕ([β])( (( (↦
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When m = 0, let ϕ([β])([α1], ..., [αn]) = •, if [β ◦ (α1 ⊗ ...⊗ αn)] =
[ ]

, and

ϕ([β])([α1], ..., [αn]) = ⊥ otherwise. The proof that this defines a morphism of
pros is an exercise in diagrammatic reasoning using the equational theory of
cartesian restriction categories and can be found in Appendix C. To see that
this automaton accepts exactly L, let α ∈ L (ϕ ◦ SL), then by definition we

must have SL(α) =
[ ]

, and so α ∈ L (by Lemma 9.5). Conversely let α ∈ L,

then SL(α) =
[ ]

and by definition ϕ
([ ])

(•) = •, so α ∈ L (ϕ ◦ SL).

Therefore ϕ ◦ SL is a deterministic monoidal automaton recognizing L.

Example 10.12. A simple example is given by the language L of “bones” over
the monoidal alphabet Γ = { , }, having one connected component: .
The syntactic pro of this language has a cartesian restriction prop structure,
with the counit given by the equivalence class [ ], comultiplication by [ ],

and symmetry by [ ]. It is clear that FΓ/≡L(0, 1) has one equivalence class,

[ ], which becomes the state of the monoidal automaton. The construction
above then gives the obvious transition functions required for each generator.

11. Convex monoidal automata and the powerset construction

Non-deterministic finite state automata for words and bottom-up trees can
be determinized via the well known powerset construction. However, top-down
tree automata cannot be determinized in general [21, §2.11], so general monoidal
automata also cannot be determinized (Observation 7.4). However, there are
interesting examples of deterministically recognizable monoidal languages that
are not tree languages, such as the monoidal Dyck language (Example 4.7) and
Sierpiński triangles (Example 4.10), and it is an intriguing theoretical challenge
to characterize such languages.

In this section we study a class of determinizable automata called convex au-
tomata, and introduce a powerset construction for them. The classical powerset
construction is given conceptually by composition with the functor Rel → Set,
sending sets to their powersets and relations to their corresponding functions,
right adjoint to the inclusion Set ↪→ Rel. As remarked above, we cannot hope
to obtain an analogue of this functor for monoidal automata. Thus we describe
a suitable subcategory of RelQ for which determinization is functorial, that of
convex relations.

Definition 11.1. A relation ∆ : Qn → P(Qm) is convex if there is a morphism
∆∗ such that the following square commutes:

(PQ)n (PQ)m

P(Qn) P(Qm)

∆∗

∆#

∇P ∇P
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where ∆# is the Kleisli lift of ∆, and ∇P is the canonical map from tuples
of subsets to subsets of tuples given by cartesian product.

Example 11.2. The relation ∆γ : Q0 → P(Q4) induced by the grammar
in Example 4.11 is not convex, since (A,B,B,A) and (A,C,C,A), which we
can think of as “convex combinations” of the state vectors (A,B,C,A) and
(A,C,B,A), are not included in the image of the relation.

Lemma 11.3. Convex relations determine a monoidal sub-category CRelQ ↪→
RelQ.

Proof. See Appendix C.

Definition 11.4. An automaton ∆ : FΓ → RelQ is convex if it factors through
CRelQ.

The following lemma gives the powerset construction on convex automata.
We use the non-empty powerset P+ to avoid duplication of failure state (∅ in
RelQ, but ⊥ in ParP+(Q)):

Lemma 11.5. For each set Q there is a strict monoidal functor DQ : CRelQ →
ParP+(Q) which is identity on objects and acts as follows on morphisms:

∆α : Qn → P(Qm)

P+(Q)n
ηn

−−→ (⊥P+(Q))n
∆∗

α−−→ (⊥P+(Q))m
∇⊥−−→ ⊥(P+(Q)m)

where we use elide the isomorphisms P(Q)n ∼= (⊥P+(Q))n. ⊥ is the maybe
monad, η is the unit of this monad, and ∇⊥ is its monoidal multiplication with
respect to the cartesian product, sending a tuple to ⊥ if ⊥ appears anywhere
in the tuple. This action is well-defined, since if there is more than one ∆∗

α

witnessing the convexity of ∆α, the resulting morphisms defined above are equal.

Proof. See Appendix C.

Determinization of a convex automaton ∆ : FΓ → CRelQ is now just given
by post-composition with the functor DQ : CRelQ → ParP+(Q). We show that
this preserves the language:

Theorem 11.6. Determinization of convex automata preserves the accepted
language: let ∆ : FΓ → CRelQ be a convex automaton, then L (∆) = L (DQ ◦
∆).

Proof. Let α ∈ L (∆), i.e. ∆α(•) = {•}. Then we must have ∆∗
α(•) = •, and so

(DQ ◦∆)α(•) = •. Conversely let α ∈ LD(DQ ◦∆), i.e. (DQ ◦∆)α(•) = •. Then
we must have that ∆∗

α(•) = •, and so ∆α(•) = {•}, that is α ∈ L (∆).

26



Example 11.7. Non-deterministic monoidal automata over bottom-up tree mo-
noidal alphabets (Definition 7.3) are convex, with ∆∗ := ∆# ◦∇P . This reflects
the well known determinizability of bottom-up tree automata. For top-down tree
monoidal alphabets, the general obstruction to convexity (and thus determiniz-
ability) is seen as the non-existence of a left inverse of ∇P , from sets of tuples
to tuples of sets.

12. Conclusion and future work

There are several classical topics in the theory of regular languages, such
as regular expressions, the Myhill-Nerode and Kleene theorems, that would
be interesting to investigate in the setting of monoidal languages. There is also
much room for further investigation of properties of the syntactic pro, paralleling
the algebraic theory of automata and languages [28] which links properties of
the syntactic monoid of word languages to properties of the language itself.
Classical language theory also has rich connections with logic [36]; lifting this
to the setting of monoidal categories is a intriguing theoretical challenge.

There are also many connections between the word problem for groups and
automata theory (see [6] for an overview). Following Burroni’s introduction
of the word problem for n-monoids [5], many special cases have been studied
in detail. In particular, Delpeuch and Vicary give an algorithm for solving
the word problem for the string diagrams of planar monoidal categories [13].
Investigation of the links between the theory presented here and the various
word problems for string diagrams [12] could enrich the understanding of both.

Monoidal categories can sometimes be equipped with natural symmetries,
which allows strings to cross: the corresponding string diagrams are non-planar.
Our framework can extend to these symmetric monoidal categories. In forth-
coming work [17], we show how the resulting symmetric monoidal languages are
related to Mazurkiewicz traces and asynchronous automata in concurrency the-
ory. Premonoidal categories also admit a string diagrammatic presentation over
monoidal graphs [31] in which an ordering on generators is defiend. We con-
jecture that context-free languages of words arise as a particular case of regular
premonoidal languages. Many results in this paper do not need the assumption
of planarity: for example we work at the level of grammars and automata in
proving closure properties. Therefore these results should extend to these new
flavours of monoidal language.

We have investigated determinization of automata, but have not touched on
minimization: it would interesting to see whether the categorical approach to
minimization of Colcombet and Petrişan [10] can be lifted to our setting.

We also plan to investigate a notion of context-free monoidal language, us-
ing a similar algebraic approach to this paper. The candidate algebra for such
languages is the produoidal category of contexts in a monoidal category [15].
Following Melliès and Zeilberger [26], we expect that this should yield a monoi-
dal version of the Chomsky-Schützenberger representation theorem.
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Appendix A. Congruence on a monoidal category

Definition Appendix A.1. A congruence on a monoidal category C is an
equivalence relation f ∼ g on pairs of parallel morphisms f, g : x → x′ compat-
ible with composition and monoidal product:

• f ∼ g =⇒ k ◦ f ◦ h ∼ k ◦ g ◦ h whenever these composites are defined,
and,
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• f ∼ g =⇒ p⊗ f ⊗ q ∼ p⊗ g ⊗ q.

Given a congruence on a monoidal category C , we can define the quotient
monoidal category C /∼ as the category with objects those of C , and homsets
(C /∼)(x, x′) := C (x, x′)/∼, with composition and monoidal product defined in
the obvious way. The quotient functor C → C /∼ is monoidal, full and bijective
on objects (and strict when C is strict). When C is a pro, the quotient monoidal
category is a pro, and the quotient functor is a pro morphism. One can easily
verify with string diagrams that the syntactic congruence (Definition 9.2) is
indeed a congruence, and so the syntactic pro is well defined.

Appendix B. Cartesian restriction categories

A cartesian restriction category [9] can be defined as a symmetric monoi-
dal category in which every object is equipped with a coherent commutative
comonoid structure for which comultiplication is natural. The following equa-
tions spell out the details of this definition. We write for the counit of the

comonoid on an arbitrary object, for the comultiplication of the comonoid

on an arbitrary object, and for the symmetry between two objects. Then
to say that there is a commutative comonoid structure on each object is to
say that the following equations of string diagrams (CCM) hold (respectively:
coassociativity, commutativity, and left unitality):

= = =

(CCM)
Note that “right unitality” may be derived from these. To say that these

comonoid structures are coherent is to say that for all objects X and Y we have
the following equations of string diagrams:

X⊗Y

X⊗Y

X⊗Y

X

Y

X

X

Y

Y

= X⊗Y

X

Y

= (coherent)

Finally to say that comultiplication natural is to say that we can move
morphisms through comultiplication as follows:

fX

Y

Y f

f

X

Y

Y

= (natural)

Appendix C. Details for Section 11

Proof of Lemma 11.3. It is clear that identity relations are convex. It remains
to show that the composite of convex relations is convex, and that the monoidal
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product of convex relations is convex. For the former, take convex relations
∆α : Qa → P(Qb),∆β : Qb → P(Qc), and take (∆β ⋄ ∆α)∗ = ∆∗

β ◦ ∆∗
α, where

⋄ is composition in Kl(P). Consider the following diagram:

(PQ)a (PQ)b (PQ)c

P(Qa) P(Qb) P(Qc)

P2(Qb) P2(Qc)

P3(Qc)

∆∗
α

∆#
α

∇ ∇

P(∆α) µ

∆∗
β

∆#
β

∇

P(∆β) µ

P(µ)P2(∆β)

We want to show that ∆#
β ◦∆#

α = (∆β ⋄∆α)#, so that the pasting of the two
convexity squares at the top witnesses convexity of the composite. By definition
of Kleisli extension we have that:

∆#
β ◦ ∆#

α = µ ◦ P(∆β) ◦ µ ◦ P(∆α)

by naturality of µ,

= µ ◦ P(µ) ◦ P2(∆β) ◦ P(∆α)

= µ ◦ P(µ ◦ P(∆β) ◦ ∆α)

= µ ◦ P(∆β ⋄ ∆α)

= (∆β ⋄ ∆α)#

Now take convex relations ∆γ : Qn1 → P(Qm1),∆ε : Qn2 → P(Qm2).
Take (∆γ ⊗ ∆ε)

∗ = ∆∗
γ × ∆∗

ε. We have that:

P(Q)n1+n2
(∆γ⊗∆ε)

∗

−−−−−−−→ P(Q)m1+m2
∇−→ P(Qm1+m2)

= P(Q)n1+n2
⟨∇◦∆∗

γ ,∇◦∆∗
ε⟩−−−−−−−−−→ P(Qm1) × P(Qm2)

∇−→ P(Qm1+m2)

by convexity of ∆γ ,∆ε,

= P(Q)n1+n2
∇×∇−−−→ P(Qn1) × P(Qn2)

P(∆γ)×P(∆ε)−−−−−−−−−−→ PP(Qm1) × PP(Qm2)

µ×µ−−−→ P(Qm1) × P(Qm2)
∇−→ P(Qm1+m2)

= P(Q)n1+n2
∇−→ P(Qn1+n2)

P(∆γ×∆ε)−−−−−−−→ P(P(Qm1) × P(Qm2))

P(∇)−−−−→ PP(Qm1+m2)
µ−→ P(Qm1+m2)

= P(Q)n1+n2
∇−→ P(Qn1+n2)

P(∆γ⊗∆ε)−−−−−−−→ PP(Qm1+m2)
µ−→ P(Qm1+m2).

Hence ∆γ ⊗ ∆ε is convex.
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Lemma Appendix C.1. The following diagram commutes

(⊥P+(Q))n

⊥(P+(Q))n (⊥P+)(Qn)⊥∇P+

∇⊥
∇P

Proof. Reason by cases on elements of (⊥P+(Q))n, either no element of the n-
tuple is ⊥, or at least one is. In either case, the functions coincide by definition.

Proof of Lemma 11.5. We first show that the action on morphisms is well-
defined. It suffices to show that if ∆∗

α, ∆̂∗
α are distinct witnesses to the con-

vexity of ∆α, then ∇⊥ ◦ ∆∗
α = ∇⊥ ◦ ∆̂∗

α. From Lemma Appendix C.1,
∇P = ⊥∇P+ ◦∇⊥. Furthermore, ⊥∇P+ is injective, so our conclusion follows,
using the definition of convexity: ∇P∆∗ = ∆# ◦ ∇P = ∇P ◦ ∆̂∗.

We need to show that this mapping is a strict monoidal functor. It is clear
that identities are preserved. It remains to show that that composition and
monoidal product are preserved. Let ∆α : Qa → P(Qb),∆β : Qb → P(Qc).
We require DQ(∆β ⋄ ∆α) = DQ(∆β) ◦ DQ(∆α). This follows from the commu-
tativity of the following diagram (naturality of ∇ and the naturality of η), and
the unit law for Kleisli composition in Par.

(⊥P+(Q))b (⊥⊥P+(Q))b

⊥P+(Q)b ⊥(⊥P+(Q))b

∇⊥

⊥ηb

η
∇⊥

ηb

Strict preservation of the monoidal product follows easily from the fact that
(∆γ ⊗ ∆ε)

∗ = ∆∗
γ × ∆∗

ε.

Proof of Theorem 10.11. We show that the defined mapping is indeed a mor-
phism of pros. For composition, we need to show ϕ([γ] ◦ [β]) = ϕ([γ]) ◦ ϕ([β]).
The ith component of ϕ([γ] ◦ [β])([α1], ..., [αn]) is the equivalence class:

... ... ...
...

αₙ

α1

β γ i

where the ith output of γ is dangling on the right. The ith component of
(ϕ([γ]) ◦ ϕ([β]))([α1], ..., [αn]) is the equivalence class:
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γ

... ...

... ...

αₙ

α1

β

α1

... ...

αₙ

β

...
...

i

But since FΓ/≡L is a cartesian restriction prop, the representatives of these
equivalence classes are the same diagram (by repeated applications of the nat-

urality of and unitality). Hence this is the same equivalence class, and ϕ

preserves composition.
For identities, the ith component of ϕ([idn])([α1], ..., [αn]) is the equivalence

class:

...
...

�✁

�i

�1

For ϕ([idn]) to be the identity, this needs to be equal to the equivalence class
[αi]:

αi

But these must indeed be the same equivalence class, for if there were a con-
text that distinguished these morphisms, we would have a contradiction, since
languages are closed under monoidal products (Lemma 8.4). Similar diagrams
hold for the preservation of the monoidal product, and thus we have a morphism
of pros.
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