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TRANSCENDENCEIN OBJECTIVE NUMBER THEORY
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Introduction

A few years ago, when Bill Lawyere and I were ■rst teaching the
elementary course which became our book [2], we needed simple examples
of~‘"’categ01‘iesof cohesion’, categories which exhibited the general features

of categories of t0p010gical 0r algebraic or analytic spaces,but were simple

enough to be grasped by beginners. We chose to concentrate on two presheaf

categories, ■nite dynamical systems and ■nite directed graphs, and used
these to illustrate universal constructions, such as products, coproducts,

and function spaces.
Of course we showed the students that these categories share many

of the general features of the category of ■nite sets, so that the arithmetic

of addition, multiplication, and exponentiation 0f isomorphism classes of

objects in such a category could be regarded as a natural analog of
the arithmetic of natural numbers. While we were thus able to illustrate
the categorical roots of the basic identities satis■ed by these arithmetic

Operations,the matter was not pursued very far; hence it seemedto us that

some 1ight might be shed by investigating this ’objective number theory’

more fully...

Most of the progress came by ■rst studying the example of the category
Graph of ■nite directed graphs, in which an object is a pair of ■nite sets
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called ’arrows’ and ’dots’, together with two maps, called ’source’ and
’target’ from arrows to dots. In my talk in Perugia, I described how this

led to a general theory of addition and multiplication, in any extensive

category with ■nite products, in which every in■nite chain of retracts
terminates. (A category E is extensive iff it has ■nite coproducts and for

each pair A, B of objects, the obvious functor E/A ><E/B —>E/A + B
is an equivalence.) This includes basic examples from algebraic/analytic

geometry, e.g. the Opposite of the category of commutative Noetherian

rings.

Since I spoke about the same tOpic later in Montreal, also at an
occasion honoring Bill, and an account of that talk will appear elsewhere,

[3], it seemspreferable to describehere somemore recent results, involving
exponentiation.

This subject is still in preliminary form, as so far only the special

case of ■nite graphs has been studied, and I do not yet know whether

this will lead to an understanding of more general categories. Still, even
this example may be of interest, since the analogous questions in classical

number theory have been studied intensively for several centuries, but have

eluded all efforts to reach a complete solution.

Hilbert’s seventh problem

In 174], Euler proposed that 2‘5 is transcendental, that is, not a
root of any non-zero polynomial with integer coef■cients. This was rather

bold, for it was another hundred years before Liouville was able to prove
00

the existence of transcendental numbers, by showing that Z 10‘”! is
n=0

transcendental. (Cantor’s observation that there are more real numbers

than algebraic numbers was still well in the future.) Considerable progress
was made by Lindemann, Weierstrass, and others, but at the turn of the

century Euler’s original problem was still untouched, and Hilbert included

it as the seventh of the problems for our century to attack. Gelfond and

Schneider ■nally showed that Euler was correct, and Baker and many
others made further progress since, but there is still a lot that we do not
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know about algebraic powers of rational numbers.

The most Optimistic conjecture about the algebraic behavior of the
complex exponential function, which suggested itself to the author in his
student days, is that if a1, . . . , a,, are complex numbers linearly independent

over the rationals, then among the 212 numbers a,—,
eat

, some n are
algebraically independent, i.e. do not constitute a zero of any polynomial in

n variables with integer coef■cients. Current methods seem still to be far
from proving this, or even from proving one of its consequences relevant
to our story, namely that if p], . . .., pm are distinct primes and 1,0],

... . , an

are algebraic numbers linearly independent over the rationals, then the mn

numbers p? form an algebraically independent list.

Rational and antiratio'nal algebraic graphs

We say that a ■nite graph G is algebraic if there exist distinct
polynomials p(T), g(T), with natural number coef■cients, such that p(G)

is isomorphic to g(G). By the general theory described in [3], G is
algebraic if and only if it is separable (the diagonal G —>G x G is a
summand) iff the spectrum of G (the set of cardinalities #Grap/2(C, G),

C connected) is ■nite; and then p(G) is isomorphic to q(G) iff p(T)
and q(T) agree on the spectrum of G

.
Since in a presheaf category an

object is separable iff as a functor it acts monomorphically, it follows
that an algebraic graph is uniquely a sum of connected graphs from two
in■nite families: arrow-strings An for n __>_0, with n + l dots and n arrows
arranged in a line head to tail, and cycles C'n for n __>_1, with n dots

and n arrows arranged in a circle head to tail, C1 = 1 being the terminal

object. (If a graph is not algebraic we say it is transcendental...)

In an extensive category, if X and X x Y are nonzero ’natural numbers’

(sums of 1’s) then so is Y
,

thus there is no graph ’two-thirds’, etc. Hence

we decide to use the term ’rational graph’ in the sense suggested by Euler’s

observation:

Definition: An algebraic graph E is rational iff for all B, B algebraic

implies BE algebraic.
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An easy genera]theorem shows that for any E
,

separableor not, the
following are equivalent:

(1) for all B, B separableimplies BE separable;

(2) 25 is separable;
(3) the map true: 1 —>25 is an isolated point (ie a summand);

(4) multiplication by E preserves density of maps, where a map
X —>Y is called ’dense’ if it factors through no proper summand of Y,

Specializin g to. graphs, we see that the rational graphs are exactly

sums of cycles, so that every a1gebraic graph is uniquely a sum of a
rational graph and an antirational graph, Le. a sum of arrow—stringsAn.

Algebraic independence of rational graphs to antirational powers

By the Isbell-Pultr theorem [1], two ■nite graphs X and Y are
isomorphic provided that for each ■nite graph C

,
the cardinalities of the

sets Graph(C, X) and Graph(C, Y) are equal, and it clearly suf■ces to
restrict to connected graphs C...From this it follows that if R is rational,
with n dots, and A is antirational then R"‘ is isomorphic to 12“. To see
this, note that mapsC —>RA correspondto mapsC x A -—>R, and that
there is a map from C x A to some An

,
from which it follows that the

number of maps from any connected component of C x A to R is equal

to the number of dots of R, since R is a sum of cycles.

Thus to understand rational graphs to antirationa] powers, it suf■ces

to understand natural graphs (sums of 1’s) t0 antirational powers, and these

are governed by the following theorem:

Theorem I: The family [)A"
,

with p ranging over primes, n over
natural numbers, is algebraically independent.

That is, if Gl,
... .,

Gk are distinct graphs in that family, and p, q

are polynomials with natural number coef■cients in k variables such that
p(G],

. . . ,
Gk) E (I(G],

. ....,
Gk), then p =2q. The theorem is proved by

■rst showing that each monomial, or product of powers of graphs in the
family, is connected; this reduces the problem to the case where each

of p and q is a single monomial. A further application of Isbell—Pultr,
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together with the uniqueness of prime factorization of natural numbers,
then reduces us to the case of a single prime p; we must show that if
p4 ; pA’ then A Z—A’

.
Because [J has a point (a map from 1), we have

multiplicative cancellation and can assume that A involves An while A’
involves only those A,- with z"< n. Then we Observe that in pA’, between

any two points there are directed paths shorter than those possible in pA
,

giving the desired contradiction.

Allowing algebraic coef■cients

At ■rst sight, it might seem that the complete story of the algebra
of rational graphs to algebraic powers has been reduced by Theorem 1

t0 the algebra of algebraic graphs, since in the rig generatedby algebraic
graphs and algebraic powers of rational graphs we have succeeded in
reducing every element to a sum of terms of type K M where K is
algebraic and M is a product of graphs pA". Since the graphs pA" are
algebraically independent, what remains to be done? The dif■culty is that
experiencewith Classicalnumber theory is misleading, becauseof the failure
hereOf multiplicative cancellation. If graphs are algebraically independent

over the natural numbers, we cannot conclude that they are algebraically
independent over the ri g of algebraic graphs. The simplest example is
A024“ 2 2/10; even though 2"“ is transcendental, we can multiply it by
the non—zeroalgebraic graph A0 (an isolated dot) and get an algebraic
result. Fortunately, it turns out that this simple example easily generalizes

to give a normal form.

Theorem 2: Any element of the rig generated by algebraic graphs
and algebraic powers of rational graphs is uniquely a sum of connected

elements, each of which is in turn uniquely a ■nite product Cl'lpSP

C is connected and algebraic, each 5,, is antirational and if C is A", then
,

where

the exponents Sp involve only those A,- with i < n.

The proof follows the pattern of Theorem 1; more details (and hOpefully

more general results) will appear in a book on objective number theory

Which Bill and I are in the process of writing.
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