
ON THE TOPOLOGY OF DIFFERENTIABLE 
MANIFOLDS 

By HASSLER WHITNEY 

1. Introduction. This paper is concerned with problems atout 

vector fields in manifolds and sets of vector fields; we may demand 

that the fields be tangent to the manifold or, if the manifold is in 

euclidean space, normal to the manifold. 

In Part I we study the question of the existence of a field of 

vectors everywhere normal to a surface in 4-space E*. It turnsout 

that, although such a field always exists if the surface is orientable, 

this need not be the case for a non-orientable surface, for example, 

the projective plane. The proof requires but a minimum knowl- 

edge of topology on the part of the reader. In Part II the general 

theory of sphere bundles (formerly called “sphere spaces”) is dis- 

cussed. In particular, properties of the characteristic classes are 

studied. For further information see [3].! Part III gives appli- 

cations of the theory to the tangent and normal bundles of a mani- 

fold—and hence to problems on vector fields. A formula which 

may be thought of as a duality theorem plays a fundamental réle 

here. The characteristic classes of n-dimensional manifolds M™ 

with n = 2, 3, 4 are studied in particular. The classes of a certain 

M? and of a certain M* are determined; it is shown that the latter 

cannot be imbedded (see § 16 for definitions) in E7. 

Part 1. NorMAL VECTOR FIELDS TO SURFACES IN 4-SPACE 

2. The 2-dimensional invariant W2?- M. Consider first a sur- 

face? M in 3-space E®. At each point p € M there are two unit 

  

! Some further theorems will be found in [S]. The author expects to give a 
detailed account of the theory in book form. 

* Only differentiable, or “smooth,” manifolds will be considered. Thus M is 
supposed to have a continuously turning. tangent plane.
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normal vectors. At a point p, choose one of them, v(po). We 

may choose v(p) for all p near p, so that v(p) is continuous. But 

can we so choose v(p) over all of M? Clearly if and only if M is 

orientable (2-sided in E?).} Thus, for the Mabius strip, if we 

choose v(po) and carry p from p, along the strip back to pe, a con- 

tinuous v(p), starting as v(p,), will come back into — v(po); hence 

v(p) cannot be made continuous over the strip. 

Now suppose we have M C E* Then at each p there are a 

tangent plane Pr(p) and a normal plane Px(p); a normal vector 

v(p) may lie anywhere in Py(p). The end points of the unit nor- 

mals at p form a 1-sphere (i.e. a circle) S(p). Our problem may 

now be stated as follows: For each p ¢ M is it possible to choose 

a point ¢(p) € S(p) so that ¢ is continuous in M? There is greater 

likelihood of a positive solution in this case than for M C E3, 

since there is greater freedom of choice for the v(p). 

We shall attempt to construct v, or ¢, over M as follows. 

Suppose M is triangulated into very small 2-cells, 1-cells, and ver- 

tices. Choose ¢(x;) € S(x;) arbitrarily at each vertex x;. Now 

take any 1-cell ¢! = x,x;. This cell is a small slightly curving line 

segment; the set of S(p) for p € ¢! forms a cylinder &(a'), slightly 

curved. If we let ¢(p) run along the cylinder from ¢(x:) to ¢(x;) 

as p runs from x; to x;, so that ¢(p) € S(p), then ¢ will be properly 

defined over o'. Thus we define ¢ over all 1-cells. 

Now take any 2-cell 62. Choose coérdinates so that o? is ap- 

proximately in the (x,, x2)-plane; then each S(p) is nearly parallel 

to the (x; x,)-plane. Hence for each p we may determine the 

points of S(p) by an angle 6, measuring from the xs-axis toward 

the xs-axis. We now have a (1 — 1) correspondence between the 

pairs (p, ) and the points £(p, 6) of S(a2), where S(a?) is the set! 

of all points on all S(p), p £o2. 

¥ Compare Seifert-Threlfall, Topologie (Leipzig, 1934), pp. 272-276. See also 
{3], pp. 789-791, and formula (20. 4) of the present paper. 

4 Thus this set of points is expressed as the cartesian product of ¢* and ti.le 
values 8. Such a “cosrdinate system” in the S(p) is studied more closely in 
Part 11; see the £, (p).
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The values # we may think of as being points of the unit circle 

S; in the (xs, x4)-plane. For each p’ e S(p) let £-1(p, p’) denote 

the point 8 of S; such that £(p, §) = p’. 

An orientation of E* is determined by choosing an ordered set 

of four independent vectors, wy, we, w;, w,, for instance, the unit 

vectors along a fixed set of axes. We keep this orientation fixed 

from now on. 

Select a definite orientation of ¢? by choosing an ordered pair 

of independent vectors u,, u; parallel to ¢2. Then there is a corre- 

sponding orientation of Sy, by vectors us, %4, such that u;, - « -, u4 

determine the same orientation of E* as wy, - - -, wy. 

Since ¢ is defined over the boundary d¢? of 02 we may set 

(2.1) v(p) = £4p, ¢(p)),  peddt 

This is a continuous mapping of d¢? into S;, giving the “angle” of 

¢(p) in S(p). Now da? is oriented by going from the direction of 

u; toward the direction of #,. As p runs around de¢? once posi- 

tively, ¥(p) runs around Sy a certain number of times,® which 

number we call W(g?). 

Suppose W(e?) = 0. Then it is not hard to see that it is 

possible to define Y(p) through ¢? so that it is continuous. We 

may then set 

(2.2) o(p) = E(p, ¥(p)),  ped? 

and thus extend ¢(p) over 2. If, however, W(g?) # 0, then this 

is impossible. Of course, altering ¢ on 1-cells of M will change 

some of the W(g?). Our problem is, then, Can the ¢(p) be chosen 

on the 1-cells so that all W(e*) = 0? If so, and only if so, ¢(p), 

and hence the normal vector field v(p), can be defined all over M. 

If the surface is open, or has a boundary, then it can be shown 

that v(p) always exists.! Henceforth we consider only closed sur- 

§ This is the “degree” of . 
¢ In terms of the general theory the characteristic 2-class, determined by 

W2 M (see below), is a 2-cocycle; but in this case every cocycle is a coboundary. 
See Part I1.
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faces. It will turn out that ) W(d?) is independent of ¢ and is 

the only invariant; hence v exists if and only if 2_W(a?) = 0. 

If we let W2 be the chain whose coefficient on o7 is W(s?), and 

let M be the chain D_o?, then? (see §§ 9 and 15) 

2. 3) S W(e) = WM. 

3. The invariance of W2- M. We shall show first that the in- 

teger W(o?) is independent® of the orientation chosen for ¢2. For 

suppose the orientation of o2 had been chosen in the opposite 

manner, say by the ordered pair of vectors us, u;. Then the orien- 

tation of S; would have been chosen in the opposite manner, for 

instance, by u4, u3, to obtain a set u,, ui, u4, u3 equivalent to 

1, -+ -, #g. In defining W(o?) we now let p run around do? in 

the opposite sense; but as the orientation of Sj is reversed, the 

same number W{(¢?) is determined. 

We next consider the effect of altering ¢ to ¢’ on a 1-cell 

o' = xx;; let ¢’ = ¢ elsewhere. There are two 2-cells with ¢! as 

face; suppose these are o2 = x;x;x; and o3 = x,x;x;; let them be 

oriented as shown. As p runs along xx;, say ¢’(p) runs around 

the cylinder &(¢!) from ¢’(x;) = ¢(x:) to ¢'(x;) = ¢(x;) a number 

o of times more than ¢(p). Then, if a fixed circle S} is chosen as 

in § 2 and oriented like a circle of &(¢'), and Y1 and ¥» are defined 

in dd% and do} as ¥ was defined in § 2, and ¥/ and ¢4 are defined 

with ¢ replaced by ¢’, it is clear that ¢/ (p) runs around S; « times 

more than ¢4(p) (¢ = 1,2). But the chosen orientations of ¢? and 

o give opposite orientations of the (x;, x;)-plane (see § 2); hence, 

in defining W(0?) and W(0?2), S; is to be given opposite orientations. 

Therefore one of these W(g?) is increased by a, and the other is 

decreased by «, so that D W(o?) is unchanged. 

7 The chains must be considered chains in the complex associated with M? if 
M? is not orientable; see § 15. 

8 In a chain of an ordinary complex W(— o?) = — W(s?). The present chain 
is in a complex K* whose cells are the pairs (¢, 6), ¢ being an orientation of the 
S(p), peo. We have defined in reality W(s? 68) rather than W(s?); since 
(— % —8) = (% 8) (see §15), W(— o2, — 8) = W(ds? 0).
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Thus altering ¢ on 1-cells has no effect on W?- M. It is easily 

seen that the definition of ¢ on the vertices has no effect.® It can 

also be shown that the number W?- M comes out the same, no 

matter how M is subdivided into a complex. Hence it is a topo- 

logical invariant of the imbedding of M in E3; it changes sign with 

reversal of orientation of E* Finally, deforming M in E* does 

not alter W2- M. 

If W2- M = 0, it is fairly simple to show that ¢ may be altered 

over the 1-cells, one after another, until a ¢’ is obtained, with 

W, (6}) = 0 (all 2). Hence for closed surfaces there exists a normal 

vector field to M in E* if and only if W2- M = 0. 

4. Types of critical points. Take M C E4, andlet p;, - - - , P, 

be the points where the tangent plane is perpendicular to the 

x4-direction; we may assume these are finite in number. (If not, 

a slight deformation of M will give this and the following proper- 

ties.) Let fi(p), - - -, fa(p) be the codrdinates of pe M; set 

¢; = fi(p:). We may assume that the ¢, are distinct. Also, for a 

suitable parametrization (%, v) of the part of M near p;, f; has 

the form 

(4. 1) folw, v) = £ u £+ o2 

1f both signs are + (or —), piisarelative minimum (or maximum) 

of f+. If oneis + and one —, we have a saddle point. 

Let M(a, b) be the set of all p with a = fi(p) £ b. Let 

M(a) = M(a, ¢). We may suppose, finally, that for a # any ¢;, 

M(a) is a set of smooth closed curves, lying in E*(a) (the 3-space 

for which fi(p) = a), and that M(c;) is a set of closed curves, 

together with a point p; (in case of a minimum or a maximum), 

or a figure 8 through p: (Fig. 1), or a pair of curves intersecting 

at right angles at p; (Fig. 2). 

Let ¢/ and ¢!’ be numbers close to ¢;, ¢! < ¢; <¢l’. 

In case of a figure 8, M(c!) has one (or two) curves near the 8§, 

9 1f ¢ and ¢’ are defined, we may delorm ¢’ into ¢’/, where ¢'’ = ¢ on the 
vertices; clearly Wi M = Wi, - M. By the proof above W3- M = W3- M.
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while M(c!') has two (or one); we then call p of type 1 —2 

(or 2 — 1). In the case of the two loops, M(c!/) and M(c{’) have 

each a single curve near the loops; then p; is of type 1 —»1. A 

minimum (maximum) is of type 0 — 1 (1 — 0). If p,;is of type 

1 — 1 (and only then), M(c!, ¢!') consists of a pair of Mobius 

strips joining at p; (Fig. 2). 

  

FiG. 1. Point p; of type 1 — 2. Small Fi1G. 2. Point p; of type 1 — 1 
arrows show direction of increase of f; 

5. A method of imbedding A in E‘ If we choose a manner 

of cutting a surface M into sets M(a) as above, and choose a 

manner of placing each M(e) in E3(a) so that the position varies 

continuously with a, we may thus define an imbedding of M in E*. 

For example, a 2-sphere S? may be cut into the north and south 

poles p2 and p,, and circles parallel to the equator. As ¢ increases 

from ¢, to ¢;, M(a) is a curve springing out from p,, and finally 

shrinking down rapidly to p: = M(cs). 

Note that the part of M(c!) or M(c!’) (in E*) near p, is ap- 

proximately an ellipse, or approximately a portion of a hyperbola. 

(See formula (4. 1).) 

If a torus is “stood up on end” in E*, so that fi(p) = 0, the 

M(a) are as follows: M(c;) = p1; M(c!’) is approximately an 

ellipse; M(c{) is a closed curve, two points of which are near 

together (and near p;): M(c;) is a figure 8; M(c{ ') and M(c7) are 
pairs of curves; M(c;) is a figure 8; M(c{ ') and M(c{) are curves; 

M(cs) = ps. The piareof types0—1,1—2,2—1,1—-0. 

For the Klein bottle B? we may take points p; of the same 

types; but we turn over one of the curves of M(a)(c: < a < ¢s)
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before bringing it back to the other at p,, or (see Fig. 3) we carry 

the curve into an “inside” position before joining it to the other. 

Note that each M(a) may be flattened into a plane E%(a) (the 

plane of the paper); we thus obtain a smooth mapping of B? into 

3-space, though of course with singularities.’® Also, if the E%(a) 

092 B 

  

< 

~0 

FiG. 4 

12 This may be well seen from the figure in Hilbert and Cohn-Vossen, An- 

schauliche Geometrie (Berlin, 1932), p. 272, considering the x-direction as being 
to the right, or in Seifert-Threlfall, Topologie, p. 13, with the x,-direction down 
and slightly to the left. We should first smooth off the edge on the bottom of the 
latter figure.
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are parallel to the (x1, x2)-plane, then, if »(p) is in the positive 

xs-direction at each p, v(p) is never tangent to M, and hence may 

be deformed into a normal vector feld in E!. Therefore also 

WM =0. 

In Figure 4 we show an imbedding of B? in EY, for which (see 

formulas (7. 1) and (6. 5)) 

L' —Li = — 2[L(A{,BY) + L(4,, B{)] = = 2(1 + 1) = — 4; 

hence W?-M = — 4. Therefore, 

in this case, no normal vector field 

exists. 

A projective plane P?is formed 

by identifying opposite points of 

thecircumference of a circular disc. 

In Figure 5 we show how P? may 

be cut into sets M(a); the p; are of 

types 0 —-1,1—1,1—-0. Fig- 

ure 6 shows an “immersion” of P? 

  

in E* with just one singular point, 

at p*. We could avoid this singular point by untwisting the 

curve M(a) for a < fi(p*) and shrinking it to a point p. 

00 © © 

DL 
Fic. 6
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In the immersion shown we may flatten the M(a) into planes 

E?(a), and thus find a normal vector field, as in the case of the 

Klein bottle. 

6. W?- M in terms of looping coefficients.”! Take any W C Ei 

In attempting to define a normal field »(p), or in studying W?2- M, 

it is sufficient to consider non-tangent fields (see a remark in § 5). 

It is easy to choose a non-tangent vector field »(p) over each 

M(c!, c!’); moreover, we may let each v(p) lie in E¥(fi(p)). (If 

v(p) is not tangent to M(e) in E3(f4(p)) at p, it will not be tangent 

to M in E*at p.) Cut up each M(c!, ¢!’) and each M(c!’, ¢cin) 

into cells. Considering v(p) as defining ¢(p) on the 1-cells of 

M(c!, ¢!’), each W(a?) = 0 there, as ¢ can be (in fact, is) ex- 

tended over the interior of ¢?>. Hence, if we determine 

(6.1) Dy =3 W(an) overall oy in M(c! , clv), 

then we can find W?- M by the formula 

s—1 

(6. 2) WM =) D, 
jm] 

Whenever v(p) is defined over an M(a), and is in E3(fi(p)), 

we set M'(a) = all points p + v(p); this is in E3(fy(p)). Then 

M’(a) does not intersect M(a), and hence the looping coefficient, 

L(M'(a), M(a)) is defined. 

Let v*(p) = v(p) on M(c!’). It is easy to extend the defini- 

tion of v*(p) continuously through M({(c!’, ¢/41) so that it is in 

E3(f4(p)), and is not tangent to M. Then clearly 

(6.3)  L(M*(clvs), M(cl)) = L(M'(c!"), M(c!")), 
where M*(c{y1) = all p + v*(p), p e M(c!s1). Call the last term 

1 if C, and C, are two oriented non-intersecting closed curves in oriented 
3-space, their looping coefficient L(C,, C;) is the number of algebraic times that 
one “loops” about the other. If we let Ci bound a piece of surface A? then 
L is the number of times C; cuts through A? in the positive sense, minus the 
number of times in the negative sense. It can be shown that L(— C), Ci) 
= — I(C\, C;) = — L(Cy, C1). Wedefine L(3_C;,2_C)) = X_L(C;, Cj).
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L!’, and defne L/ similarly. Also, if it should happen that 

v*(p) = v(p) in M(cly1), we would have D; = 0, as is shown by 

letting v(p) = v*(p) on the 1-cells of M(c!’, c/y1). At least we 

may let v(p) = v*(p) except interior to 1-cells o} of M(c/y1). Then 

changing v*(p) to v(p) on o} changes L*, by some integer a (which 

is the number of times p + v(p) runs around o, more than 

P 4 v*(p) does), and clearly changes W(c?) and hence D; by the 
1 same amount, if o2 is the 2-cell of M(c!’, c/11) with o} as a face. 

Thus we find, if we pay due regard to sign, and use (6. 3), 

(6.4) — D; = Li{yy — L(M*(cl1), M(cly)) = Liy — L{. 

Summing over 7, and noting that there are no curves in M(¢{) or 

in M(c;’), we ind 
81 s 

(6.5) WM =3 (L' —Lly) = > (L' — L!). 
(=] w1 

Observe that changing the orientation of M(c!) (or M{(c!’)) 

does not alter L! (or L!’); however, we may not reorient only a 

part of M(c!) or M(c!"). Further, corresponding curves of 

M(c!’") and M(c/;1) must be similarly oriented for (6. 4) to hold. 

Of course, M(a) and M'(e) are to be similarly oriented. 

7. Study of the looping coefficients. It is possible to choose 

certain of the p;, say p»,, pr, - - -, each of type 1 =1 or 2 — 1, 

and one of the curves, say 4;, of each M(c),), so that A, contains 

?n and so that the A, form a minimal set of cuts rendering M 

orientable. That is, there is a curve in M cutting any single 4, 

which reverses orientation in M, but none cutting no Ax. (All p; 

of type 1 — 1 must be used.) 

For example, for the Klein bottle (see § 5), 4, is part of the 

figure 8, M(c3); for the projective plane, 4, is one of the loops 

of M(c2). 

Let B, be the part of M(c),) not in 4. Then A4 and the 

curves of B, may be oriented so that the following holds: If the 

curves of M(cx,) are oriented like 4, 4+ By, the curves of M(C;:)
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are oriented like — 4, + By, and the curves of other M(c!) and 

M(c!') (¢ # any i) are properly, and similarly, oriented, then for 

each ¢ the curves of M(¢/') and M(c{,1) are similarly oriented,'? 

so that these orientations may be used in the definition of the 

L! and L!’. Moreover, if p; £ any p\, then M(c!) and M(c!’) 

are similarly oriented. 

We show now that, if M(c;) contains no A,, then L{’ = L/. 

Take a p; of type 1 =2 or 2 — 1. We can pull M'(c/) into 

M'(c;) so that we never intersect M(c/); hence L! = L(M'(c)), 

. 

TR % I g 

FiG. 7 

M(c!)). Similarly, pull M'(c!’) into M’(c;), and M(c!) and 

M(c!') into M(c;). (See Fig. 7.) We find thus 

Li = L{" = L(M'(c;), M(c:)). 

Clearly L = L!' if piisof type1 =0 o0r 0 — 1. 

Consider next a p; = p»,. Then the proof above holds, except 

that we must give the curves corresponding to A4 opposite orien- 

tations in M(c/) and M(c!'). Hence, by using the bilinearity and 

commutativity of L, 

L." - L." = L(Bk' - Ak’. By — Ak) - L(Bk' + Ak" B+ Ak) 

(7.1) = — 2L(B{, Ax) — 2L(4%, By) 
= — 2[L(4{, Bi) + L(4., BY)). 

1 This may be expressed by the boundary relation aM(c!’, ¢fs1) = M(cin) 
— M{c:'). Also aM(ch,, ci) = M(cn) — M(ch,) + 24..
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Suppose first that p is of type 2 — 1. Then L(4/{, Bi) 
= L(Ay, B{), as is seen by pulling B; away from A at p. and 

deforming it up to B{, at the same time pulling 4/ away from 

B{ and down to 4. (For instance, in Figure 7 we might have 

Ax and A, the parts of M(c;) and M’(c;) on the right, and By 

and B/ the parts on the left.) Hence, by (7. 1), 

(7.2) L! — L =0(mod 4) if p;is of type 2 — 1. 

If p;is of type 1 — 1, then the parts of Ax and B, near p; are 

smooth curves intersecting at an angle; when we deform B, into 

By and A/ into A, the two moving curves cut each other; hence 

L(Ak! Bk’) = L(Ak’r -Bk) i 11 and 

L' — L{ = —2[20(4¢, By £ 1], 
(7.3) L — L{ =2 (mod4) if p;isof type 1 — 1. 

Let N.g be the number of points p« of type & — . Then the 

results above give 

(7.4) WM =Y (L! — L!)= 2Ny (mod 4). 
fom] 

8. W?. M in terms of the characteristic x(M) of M. For any 

complex K, with af i-cells (: =0, 1, 2, - - - ), x(M) is defined as 

a® —a' +a* — - --. This is a topological invariant. If K is 

cut into disjoint pieces K, then x(K) = > x(K.). 

Closed curves and cylinders clearly have the characteristic 0. 

Hence 

(8. 1) x[M(c!’, cly) — M(c!)] = 0. 

It is easily seen that 

1if p;of e0—1lor1—0 6.2) xDicer, o) =] = {_ 20 ! 
—1if p; of any other type. 

For instance, if p;is of type 1 — 2, M(c!, ¢!') is a set of cylinders, 

together with the part R of M(c!, ¢!') near px; R may be cut into 

two long strips and a small middle piece; it then has three 2-cells 

and four inner 1-cells, together with closed curves.
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As each point of type 0 — 1 or 1 — 2 increases the number of 

curves in M(a) by one while each point of type 2—10or 1 =0 

decreases the number by one, we have Ny, 4+ N2 — Noy — Nyp = 0. 

Therefore, by adding all relations (8. 1) and (8. 2), 

x(M) = 2 x[M(cl, el ) — M(c!)] 

= No+ Ny— (Niz2+ Na + Nu) 

= 2(No1 — N21) — Ny = Ny (mod 2). 

(8.3) 

Multiplying by 2 and comparing with (7. 4) we find 

(8. 4) W2 M = 2x(M) (mod 4). 

For a non-orientable M with even characteristic there exist 

imbeddings with W? - M = 0, and imbeddings with W?- M =0 

(see Figs. 3 and 4). From the proof above we see that, if M is 

orientable, then W?- M = 0.8 Summing up, and using the funda- 

mental theorem on the classification of surfaces, we have: 

THEOREM. To any open surface, or surface with boundary, or 

any closed orientable surface, in E%, there exisls a normal vector field. 

Any other surface is homeomorphic to a projective plane P2, or P? 

with handles, in which case there exists no normal field, or to a Klein 

bottle B2, or to B® with handles, in which case there may or may not 

exist a normal field.™ 

REMARK. For the immersion of P?in Ef with one singularity 

shown in Figure 6 we noted that a normal vector field existed; 

hence W2-M = 0. But for any imbedding without singularity 

W2. M 3 0; hence this singularity cannot be removed by a smooth 

deformation. 

For more details on singularities see § 18. 

It seems a reasonable conjecture that for any non-orientable 

closed surface of characteristic x the possible values of W?- M are 

2x — 4, 2%, 2x + 4, - -+, 4 — 2x. 

12 Another prool of this will be given in § 18. 
4 This theorem may be proved from general theory also. 

See W. S. Massey, Proof of a conjecture of Whitney, Pacific Jour. 

Math. 31 (1969), 143-156.
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PART I1. CHARACTERISTIC CLASSES OF SPHERE BUNDLES 

9. Homology and cohomology groups. Let K be a fixed com- 

plex, with oriented cells ¢}. If '3 = [¢]™':¢}] is the incidence 

number of ¢! and o}, then the boundary and coboundary of the 

chain 47 = )_ad} are defined by 

(9 l) a‘41- - Z'a::a'-g‘:-_l, 6‘4r Zr+la;aia;+l’ 

where the a; are elements of an Abelian group G. A4ris a cycle 

or cocycle if 347 = 0 or 84" = 0; A" is homologous to B*, A" ~ B, 

or cohomologous to B', A" — Br, if 4” — B is a boundary or a 

coboundary. The sets of all chains, all cycles, all boundaries, 

etc., form groups. If we identify homologous 7-cycles we obtain 

the rth homology group ¢H7(K); similarly for the rth cohomology 

group “H.(K). 

Define scalar products of r-chains by 

9.2) > a-fl:) (0 fi.fl:) =Y abi, 

supposing the multiplication a8 has meaning. Note that 

(9. 3) 13«7':--cr';-_l = [a',-_l:a:-] = u:-fiar,-—l; 

(9. 4) 9AT-B=1 = Ar.3B™1;  Ar-Br = Br-Ar. 

The groups G we shall use mostly are the integers, o, and the 

integers mod m, I.. Let (a¢)m = an be the integer e reduced 

mod m; thus 0; and 1; are the elements of I,. For an 7-Iy-chain 

Ar = Ea"cr:, define A" reduced mod m as (A")m = E(ai)ma{. 

To each vertex x; corresponds the chain x;; we may say x; has 

a natural orientation. Set 

(9. 5) I =32 x; then &I =0, 

at least in an ordinary geometric complex. For takeanyo! = xx;; 

then 

5['0’1=I'601=I'(x,'—x.')=1—1=0.
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This need not be true in a general abstract complex; see § 15. 

Note that, if K is connected, then any 0-Is-cocycle is «al 

for some integer a; hence "Hy(K) = I, (i.e. is isomorphic to Iy) 

if X is connected. 

Define 4 and Br to be orthogonal if Ar-B" = 0. Any 

cocycle® Xr is orthogonal to any boundary At = dB*'; for 

X Ar = 0Xr-Brt! = 0. Similarly, any cycle is orthogonal to any 

coboundary. 

The following theorem may be proved.® An r-Iy-chain X* 

is a coboundary if and only if it is orthogonal (mod m) to every 

r-I.-cycle At for every m (i.e. X A" = 0,). An r-In-chain is a 

coboundary if‘and only if it is orthogonal to every r-I,-cycle. 

Similarly for boundaries. 

There is an important operation converting r-In,-cocycles 

X into (r + 1)-I,-cocycles (or, similarly, r-In-cycles into 

(r — 1)-Ip-cyclesi”), as follows: Let w.X" be any r-Iy-cocycle 

such that (WaX")m = X*. Then dw,X" =0 (mod m), and hence 

Y+l = (1/m)dwn X" exists. The cohomology class of Yrtl is 

uniquely determined by that of X*. Note that m Y+ .. 0. 

10. Chains and intersections in manifolds. Let K be a sub- 

division of the closed manifold M". If M"is orientable,'® we may 

orient its n-cells o7 so that Y_o7 is a cycle, a fundamental cycle of 

M (which we also call M*); every n-cycle is a multiple of M™, 

and hence T H"(M") = I,. Clearly (M");is a cycle even if M" is 

not orientable. 

If o} and o} have the common face ¢*~!, then o™ = + o] + 03; 

hence ¢; —~ + o7, and, similarly, each of is «» + ¢]. M" is non- 

orientable if and only if 207 « 0; clearly °H,(M") = I, or I, ac- 

15 We generally use X, ¥, - - - for cocycles, and 4, B, - -+ {or cycles. 
1¢ See, for instance H. Whitney, On mairices of integers and combinatorial 

topology, Duke Math. Journ., 3 (1937), 35-45, Theorem 6. The theorem is due 
essentially to H. Hopl, Abbildung der dreidimensionalen Sphire auf die Kugelfliche, 
Math. Ann., 104, 658. 

17 See Alexandroff-Hopf, Topologie (Berlin, 1935), pp. 222-223. 
18 For the non-orientable case see § 15.
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cording as M" is orientable or not. If M" is oriented, then 

o7 —~ o7, and 

(10.1) Y aioi - 3 adoy, (L) M =3 a 

and X" «» Y" if and only if X*- M» = ¥»- M. (This corresponds 

to the fact that 4° ~ B% in a connected complex if and only if 

A°-I = B°-1.) 

Let K be a subdivision of M", which we assume closed and 

oriented, and let K’ be the regular subdivision of K. Then the 

simplexes of K’ may be fitted together into cells 7 so that to each 

o} corresponds a 77 ~" = D(o}) cutting through it. Set D(7{™") = o7. 

Then 

(10.2)  8D(X7) = (— 1)™D(X"), 8D(A7) = (— 1)"D(34"). 
Hence D, the “dual” operator, maps cycles into cocycles, and con- 

versely, and establishes an isomorphism between SH"(3") and 

SH,_.(M") (Poincaré duality theorem). 

Let A" and B"" be two singular chains, neither of which 

meets the boundary of the other. Then their Kronecker index 

{A', B""'} ® an integer, is defined and gives their algebraic number 

of intersections. Thus {o}, 777"}* = 1. Let { }% mean { }° 

reduced mod m. 

More generally, if 7 + s = n, then {4", B¢} may be defined as 

an (r 4+ s — n)-chain which is linear in the two variables and satis- 

fies the relation 

(10.3) a{dr, Bt} = (= 1)n+{ad4r, B*} + {4, aB*}. 

Since {A", B""} I = {A', B""}", and 8I = 0, this gives 

(10.4)  {adr, B~—+1}o = (— 1)r{4r, 9Br—r+1}u, 

In any geometric complex K, bilinear products Xr— ¥* = Zr+ 

may be defined with certain simple properties;!® in particular, 

(10.5) (X"~ ¥*) = 6Xr— V* + (— 1)7X7 — 87", 
(10. 6) I—- X =Xr—~1=X". 

19 See H. Whitney, On products in a complex, Ann. of Math., 39 (1938), 397- 
432. See also [4].
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If K is simplicial and its vertices are ordered, xy, x2, - - - , we may 

use 

(10. 7) (x)‘o “ e xkr) ~ (x)\r « e x)‘r+‘) = Zpg vt AN, 0t Tk 

forNg < -+ - <A < -+ < A4, and 0"~ ¢* = 0 for other pairs 

of simplexes. 

In a manifold, D turns r-cocycles into (# — r)-cycles; the 

product then goes into the Kronecker index in that the same prod- 

ucts are defined in the homology groups by the two methods. 

Suppose M™ " and M"~* are oriented smooth submanifolds of 

Mr such that at any point p of intersection, except on an 

(n — r — s — 1)-dimensional set, the tangent planes to " and 

M~ at p have only a plane P"* in common;?® then the geo- 

metric intersection is a manifold or set of manifolds N~—"—. 

Moreover, interpreting these. manifolds as chains and orienting 

N»== properly, we obtain 

(10. 8) {Mn=r, M=t} = Nn—rs, 

If M~ and M~ do not satisfy the given condition, a small de- 

[ormation of one of them will bring this about; of course the homol- 

ogy class of N is uniquely determined. In particular, { M7, M} 

has meaning for 2r = n. Note that {M", M'} = {M', M"} = M. 

corresponding to (10. 6). 

11. Sphere bundles. For any smooth M?in E* we saw in § 2 

how normal 1-spheres Sy(p) were defined; these form the normal 

sphere bundle of M? in E*. At each p e M there is also a tangent 

plane, and in it a unit circle Sr(p); these 1-spheres form the 

tangent sphere bundle of M?. Similarly, for M» C E™ the tangent 

and normal sphere bundles may be defined; the spheres are of 

dimension # — 1 and m — n — 1 respectively. See also § 19. 

We now define a more general concept. A bundle of spheres or 

sphere bundle B consists of a certain topological space T, the base 

20 This will have meaning if we imbed M= in E*t, See §16. The exceptional 
set may be removed by a slight deformation; see the paper in footnote 33, Theo- 
rem 2 (p. 654) and (D) (p. 655).
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space (M in the examples above), a set of points S(p) corresponding 

to each p in M, and certain relations between these sets, as follows: 

For p # p’, S(p) and S(p’) have no common points. We denote 

by {U:} a certain set of open sets covering T. For each 7 and 

each p £ U; there is a (1 — 1) correspondence 

(11. 1) ¢ =t 9eSP), geSo, 
between the unit sphere S; in E*+! and the set of points S(p). Let 

(11. 1) be written also ¢ = £5'(p, ¢’). Set 

(11.2) (P @ = &b buy(p q),  peUi- Ui 
We assume that £v,uv,(p) is an orthogonal mapping of Sj into 

itself, which varies continuously with p. The set of all points of 

all S(p) forms the total space ©. It may be made into a topo- 

logical space in an obvious manner. 

Define orthogonality on any S(p) by means of £y,(p) for p € U,. 

Since each &u;uv,(p) is orthogonal, this definition is independent 

of 1. 

One may alter the U, and £y, obtaining a new sphere bundle. 

But as long as we obtain a homeomorphic total space, split into 

spheres in the same fashion, and with the same definition of 

orthogonality on them we call the bundles equivalent, and shall not 

distinguish between them. Each £y, may be thought of as a co- 

ordinate system in that part, &(U;), of & for which p € U.. 

We shall deal exclusively with the case that the base space is a 

complex K. If each closed cell?! ¢ is in some U;, we can use 

E(2) = Eu.(p) (P e d). 
REMARK. If we order the vertices of K, say x;, xz, - - -, and 

for each x; choose a U(x,) containing all cells of K with x; as a 

vertex, and let U(e) = U(x;) for any ¢ whose first vertex is x;, and 

use £, = £y, then, if ¢; and o: have the same first vertex, 

(11. 3) £.(p) = £.,(D), peEay o 

2 As a point set, we let ¢ mean the open cell and & the closed cell; dc is the 
point-set boundary of o.
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Similarly we may define a bundle of fibers by replacing S by 

any topological space Sy, and the group G**! of orthogonal map- 

pings of Sj into itself by any group of homeomorphisms of S, into 

itself. (See [5].) 

The bundle B is simple if we can choose the £, so that 

£,..-(p) = identity always. (This is equivalent to replacing G*+! 

by the group containing the identity alone.) We can then set 

t(p) = E(p) (p €0), and thus express & as the Cartesian product 

K X S;. Lete,---, e41 be the unit points of the axes of Sj. 

Then if B is simple, ¢:(p) = {(p, e:) defines v + 1 orthogonal pro- 

jections of K into ©@. Conversely, if such (continuous) projections 

exist, we may define {(p, ), and hence {(p, ¢), since orthogonality 

has meaning in the S(p), and thus prove that B is simple. The 

bundle B is always simple if the base space is a cell. 

12. The characteristic classes, »r = 1. Let B be a bundle of 

1-spheres (as in Part I). For each vertex x; of K we may choose 

a pair of orthogonal points ¢i(x;), ¢2(x;) in S(x;). This defines a 

characteristic 1-I-cocycle W' = W), as follows. For each 1-cell 

o' = xx; let W(a') = 0, or 1 according as ¢; and ¢, define the 

same or opposite orientations of the ends S(x;), S(x;) of the 

cylinder &(¢'); that is, according as the ordered pair of points 

(12. 1) Via(®) = En (5, $u()) t=1,2 
of S; define the same or opposite orientations of S} for p = x; as 

for p = x;. Set 

(12.2) W= > W(ml.)a:l. (coefficients in I,); 

this is the required cocycle. For any ¢’, W, — Wj; hence the 

cohomology class W' of W' is invariant; this is the characteristic 

1-class of B. The bundle is orientable if we may make all &,,.-(p) 

rotations; this is so if and only if W* = 0. (For further details 

see [3]. The W are there called F.) 

We may not be able to extend the definition of both ¢, and ¢;
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continuously over the 1-cells of K so that they are orthogonal; 

certainly not if W* = 0. However, the definition of ¢, can be ex- 

tended, and this will define a characteristic 2-Io-cocycle W* = W, 

as follows.??  We suppose that B is orientable until § 14, and that 

the &, .-(p) are rotations. 

Take any oriented 2-cell 62 = xx;x; of K. Set 

(12. 3) Va(p) = £.(p, 8(p)),  peoo; 
this is a mapping of do? into S). Let W(a?) be the degree of Yo, 

(compare §2). Then W? = ) W(s?)o?; the cohomology class 

W2 of W? is the characteristic 2-class of B, and is uniquely deter- 

mined. 

The proof runs as follows: First, it is clear that W(— ¢?) 

= — W(o?). Now let us find the effect of changing ¢ to ¢’ in 

gl = xx;; let ¢’ = ¢ elsewhere. Then ¢’(p) runs around the 

cylinder ©(¢!) some number « of times more than ¢(p) does as p 

runs from x; to x;. That is, if 

(12.8)  a(p) = £1(p, $(0)),  ¥a(p) = Ea(p, #'(2), 
then Y., (p) runs around Sj & times more than Ya(p).? 

Now deform £, into £, where £5(p) = E(p) (p £0), by the 

lemma below. The integer « is always defined, and is continuous, 

and hence constant. Therefore Y 2(p) runs around S; « times more 

than ¥.:(p); thus Wy (02) — We(o?) = a. If [o:a?] had been 

— 1 instead of + 1, we would have found the same relation, 

with — @. Thus in any case, as [¢!:¢?] = 80! 0?2 

W.y(az) - I’V¢(az) = (W:r - W:)-a2 = a&al'a2, 

and hence 

(12. 5) Wa — Wi =b8ac), Wi W, 

% For an example where W?is determined see [3], § 6, (a). 
¥ For instance, if yo1(p) runs from e, to e; and y¥;i(p) from e, through — ez 

and — e, toey, thena = — 1.
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Asin § 3, we see that W3 is independent of ¢; it is also independent 

of the subdivision into a complex K. Because of the following 

lemma it is independent of the &, chosen. 

LEmMMA. If u(p) = EN(p)E*(P) i5s a rotation for p e &, then E 

may be deformed into E*. 

The rotation u(p) is an element of the group G**! of rotations, 

and is defined in the closed cell ¢; thus it maps ¢ into G**!. Now 

o may be deformed in itself to a point po; if u is applied, u(p) is 

deformed into u'(p) = u(po). Deform u’(p) into u*(p) = iden- 

tity. If u(p) (0 =¢=1) is the whole deformation, set 

E(p) = E*(P)u ' (p). 
We must still show that W3 is a cocycle. Consider any 

3-cell 6. Set ¢'(p) = La(p, e1) on the 1-cells of ¢3. It may be 

extended over the rest of the 1-cells of K, and it determines Wfi‘. 

We showed above that W3 — W2 = 8X! for some X!. Clearly 

W3i.(e7) = 0 for all faces o} of ¢3. Hence Wj. 303 = 0, and 

Who' = (SW — 8X) -0 = Wa-do = 0. 
Since o® was arbitrary, §W3 = 0. 

13. The characteristic classes, general ». For any integer 7, 

1 £ 7 £»v <4 1, a characteristic cohomology class W may be de- 

fined as follows: Constructaset¢ = (¢1, - - - ,¢a) (@ = v — r + 2) 

of orthogonal projections of K~! into &.2 We construct them 

over the vertices, 1-cells, etc., in turn. Suppose ¢y, - - -, i1 

(1 £ a) have been constructed over K'~!, and ¢; over K*~! (s < r). 

Then ¢; is constructed over any ¢*, as follows: For each p € o let 

S’(p) be the (v — i + 1)-sphere consisting of all points of S(p) 

orthogonal to ¢1(p), - - -, ¢i_i(p); we must choose ¢.:(p) in S'(p). 

The S’(p) form a sphere bundle 8’ with * as base space. Since 

¢ is a cell, B’ is simple; hence we may choose a coérdinate system 

tinit. Set 

% The symbol K¢ denotes the subcomplex of K containing all cells of di- 
mension X s.



122 HASSLER WHITNEY 

V() = Np di(p),  pEdaY 

this is a mapping of d¢* into S¢. Now do* and S/ are sacks® 

of dimensions s — 1 and v — 7 + 1 respectively. Since 5 — 1 

< v — 1+ 1, it is possible to extend the definition of ¥ over o*.28 

The projection ¢; is extended over o* by setting 

¢i(p) = $(p ¥(P)), peEC 

To define Wr = W}, take any ¢ and set 

(13.1) V() = 7 (5, 6:(p), pedsr  (i=1,---,a) 
The mapping $1 = ¥1,» may be deformed into the mapping 

V(p) = &. It is possible to deform the other Y.(p) simul- 

taneously into ¥{"(p), so that the mappings are always orthogonal. 

Now ¥ (p), - - -, () are in the (v — 1)-sphere [es, - - - , €,41] 

of S, orthogonal to e;. Deform ¢{’(p) in this sphere into 

v®(p) = e, and deform the other ¥{V(p) simultaneously, leav- 

ing Y(p) fixed, etc. Finally, ¥(p) = e (¢ < o), and 

V() = v& () is in [ea - - -, €], a sphere of dimension 

v+1—a=r—1. Since do" is an (r — 1)-sack, ¥’ has a de- 

gree?”d. Then Wi(¢") = d or d., according to the following table: 

integersmod 2 if r = 1 orl <r<v + 1 and 7 even, 

integers fr=v+1lorl <r<v+1androdd 

We illustrate why coefficients mod 2 must be used in the case 

v=2,r=2,a =2 The mapping ¥1(p) may be deformed into 

M(p) = e in various ways; when ¥»(p) is deformed simultane- 

ously, the final ¥'(p), mapping d¢2 into [es, €3], may have different 

resulting degrees, differing from each other by any multiple of 2. 

For example, let us identity d¢? with [e;, e;]; suppose 

¥i(p) = p, vop) = — &, p € da?, 

% Since we wish to reserve the term sphere for a set in which orthogonality is 
defined, we shall call any set homeomorphic to a sphere a sack. 

® See Alexandroff-Hopl, Topologie, pp. 502 and 509. 
¥If r =1, o' = xix;, then d = 0, or 1,, according as y'(x;) and ¢'(x;) are 

the same or opposite points of [e,;1] = + ¢,,).
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If we deform 1 (p) = p directly into e, along the shortest arc of 

the circle [p, e1] through p and e, we may deform ys(p) into 

V'(p) = p, along [p, &1] simultaneously; then d = 1. But sup- 

pose we first deform ¥1(p) along [p, 1] into Y (p) = — e, and de- 

form this along a semicircle of [, e;] into Y{"(p) = ¢,. Then we 

find ¥3(p) = — p, and Y'(p) = the point of [es, €s] obtained by 

reflecting p across the xg-axis; then d = — 1. 

14. Properties of the Wr. We recall that il » =1, or if 

dim (K) = 3, then B is characterized by the classes W' and W? 

(by W?! alone if v = 0).2® This holds even if 8 is not orientable; 

but see § 15. For v = 2 and dim (K) = 4 this is not true; but 

B can be characterized in case W* = 0 and W? = 0, by means 

of a new invariant.? 

THEOREM. If W? is a characteristic cocycle, then a character- 

istic cocycle W*+! may be determined by the formula (see § 9) 

(14. 1) Wittt = 15w, W, 

As a consequence, for any odd r, 2Wr = 0. 

Again 8B need not be orientable. The formula is trivial if 

2r = vy + 1, for we may then interpret w,W?* as W? itsell. It 

holds for r = 0 if we interpret W® as I in the associated complex, 

and reduce mod 2 (see § 15). 

15. Non-orientable sphere bundles. We first discuss abstract 

complexes. They have cells and incidence numbers; but the ver- 

tices need have no natural orientation. Let us call two complexes 

locally isomorphic if their cells are in (1 — 1) correspondence, and 

for each ¢ and corresponding o* the complexes ¢ plus faces and o* 

plus faces are isomorphic. For instance, if K has the cells and 

boundary relations 

doy = b — a, dg; = ¢ — b, doy = ¢ — ¢, 

and K* is similar, except that d¢¥ = — a* — ¢*, then K and K* 

2 For this and further theorems see [3], § 7, etc. » See [5], § 4.
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are locally isomorphic. Thus the corresponding sets a3, @, ¢, and 

o, — a* c* of oriented cells form isomorphic complexes. If we 

demand that any abstract complex be locally isomorphic to a 

geometric complex, then 64 = 0 and 664 = 0 always. 

In the abstract complex K* let I* be a “unit 0-chain,” i.e. the 

sum of all arbitrarily oriented vertices. Now 8I* can be # 0; 

but it is = 0 (mod 2), so that W* = (36I*), exists. Set 

(15.1) W* = cohomology class of (367*).. 

This is the characteristic class of K*. Since 6(381*); = (3881*), = 0, 

it is a cocycle. Since changing the orientation of a vertex x; in I* 

changes W* by (38(2x))); = (8x:);, W* is an invariant of K*. If 

K, and K, are locally isomorphic, then they are isomorphic if and 

only if Wy = W,. The complex K is normal, i.e. like a geometric 

complex, if and only if W = 0. Given any K and any 1-I.- 

cohomology class X in K,% there is a locally isomorphic K* with 

W* = X3t In the example above (36I*), = (— i) = (63%)2, 

and W* = 0. 

Set p(02) = 1, p(1:) = — 1. If K is simplicial, with ordered 

vertices, we may define incidences in K* by letting [o*—1: g* ]* 

= [om': 7] if ¢! and 0" have the same first vertex, while if their 

first vertices x;, x; are distinct, we set 

(15.2) [o*—1:a*r]* = p[WH*(xix)][omt:0"). 

Now take any sphere bundle 8, with base space K. We define 

the complex K* associated with B as follows: For each cell ¢ of K 

choose an orientation 6 of the spheres S(p), p € ¢; let (g, 6) be a 

cell of K*, where, if — 6 is the orientation opposite to 6, then 

(153) (a'o)=_(—0'0)':—(”'_0):(_‘7»_0)- 

Suppose 8 and 8’ are orientations of a sphere. Then set (6,6") = 1 

10 Clearly any I-chain in a complex may be considered a chain in any locally 
isomorphic complex. 

3 For further details see [4], § 7. The application to manifolds below is due 
to G. de Rham, Sur la théorie des intersections et les intégrales multiples, Comm. 
Math. Helv., 4 (1933), 151-157,
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or — 1 according as these orientations agree or not. Now if 

¢ = ¢" and ¢’ = ¢'™! are incident in K, let (s, 8) and (¢’, 6’) be 

incident in K*, and set 

(15. 4) [(e', &) : (s, 0)) = (8 0] o). 

The complexes K and K* are locally isomorphic. For given 

any o, we choose a single orientation of all S(p), p € &, and use 

the oriented cells (¢/, 6) for faces ¢’ of . Then the incidences in 

this part of K* are the same as in K. 

If K is the complex defined in the example above, and B is 

the non-orientable 1-sphere bundle over K (whose total space is a 

Klein bottle), then the associated complex is the K* defined above. 

The complex K* may also be defined as follows: We may sub- 

divide © so that for each ¢ of K, &(0) is a subcomplex of &, and 

orient its cells so that d&(¢s) C &(ds). Then we may consider 

each &(d}) (which is of dimension 7 + ») a cell o;*, as incidence 

relations are defined for them. These form K*. 

If we choose a fixed set of £, in B, then these define orientations 

of the S(p) (p £4a). If we identify the cells of K and of K*, the 

definition above gives: [o™':0"]* = [¢"1:0"] or — [om':0"] 

according as £,~1.,-() is a rotation or not. 

Consider now the case of the tangent bundle of a manifold M™. 

Orienting an S(p) is equivalent to orienting a neighborhood U of 

the manifold about p. Each #n-cell of the associated complex K* 

has a natural orientation, namely (¢", 8), where 6 is the same 

orientation of U that o gives. The sum 2 (o7, 6:) of these cells 

is a cycle, the fundamental n-cycle of K*. It correspondsto I'ina 

geometric complex. The Poincaré duality theorem holds: 

(15.5) 9H,(K) = SH~*(K*), SH,(K*) = SH**(K). 

We now show how the characteristic classes of 8 may be de- 

termined as cohomology classes in the associated complex K*. 

The present definition is preferable even to the one of § 13, since 

the W will not depend on any previously chosen orientation of
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the S(p). Choose ¢ = (¢, - - -, P,_rs2) over K as before. 

Given any o7, choose an orientation 6 of the S(p), p e 6. Write 

all cells incident with (¢", #) in the form (¢, 6); then the definition 

of W(o") and the derivation of the properties stated go exactly as 

before. We must note that the definition gives W(o’, — 6) 

= — W(a", 8), as it should.?? 

We now prove 

(15. 6) W*(K*) = W(®B) if K* is associated with B. 

Choose orthogonal points ¢,(x;), + + -, @,s1(x:) at each vertex x;. 

These determine an orientation 6;(x;) of S(x:). Let I* = >_(x;, 6,); 

then 8I*- (x:x;) = 0 or 0 according as 6, and 6; agree or disagree 

in the cylinder &(x;x;). Thus (381%); (xix;) = W*(xix;) = 0, or 

1, depending on which holds. But also W'(x;x;) = 02 0r 1, in the 

same circumstances. 

Let K,, K,, K; be locally isomorphic complexes, with 

(15.7) W, + W, + W, = 0. 

Then we may define products X} — Vi = Z;**, as follows: We 

suppose the locally isomorphic normal complex K is simplicial, 

with ordered vertices; then incidences in the K; may be defined 

asin (15.2). We use W; = (36:1:)s, and 

W I CC VR W P 
= o[Wamrr) (e - - - 2 p)a, 

the subscripts here referring to the complexes used. 

(15. 8) 

PART I1I. TANGENT AND NORMAL BUNDLES OF A MANIFOLD 

16. Differentiable manifolds.® A differentiable n-manifold M" 

is a topological space, with a certain system of neighborhoods Uj, 

each in (1 — 1) correspondence with the interior Q of the unit 

2 In Part 1 we used essentially the cells (o, 6), 8 being an orientation of 

tangent spheres instead of normal spheres. But since Wy = W), (see § 20), the 
two associated complexes are isomorphic (see (15. 6)). 

3 For a detailed treatment see H. Whitney, Differentiable manifolds, Ann. of 
Math., 37 (1936), 645-680.
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sphere in n-space, in such a manner that, if U;-U; # 0, then in 

the common part the resulting mapping of a portion of Q into 

another portion is continuously differentiable, with non-vanishing 

jacobian. By a manifold we shall always mean a differentiable 

one. It may be shown that any M" may be imbedded in E***+}, 

that is, mapped in a (1 — 1) differentiable manner, so that the 

matrix of partial derivatives is everywhere of maximum rank. 

Also, it may be immersed in E*"; this is the same as imbedding, 

except that we allow self-intersections. If M™is immersed in E™, 

we may, by a slight deformation, make the singularities the 

simplest possible (compare § 18). A differentiable M" in E™ may 

be approximated arbitrarily closely by an analytic M in Em™. 

Any M™ may be triangulated into a simplicial complex, with differ- 

entiable cells.3 

17. The characteristic classes of tangent bundles. Let K be 

a simplicial subdivision of M™, with simplexes ¢}, and let L be the 

regular subdivision of K. Each vertex y; of L is the center of a 

simplex o of K, and 35! - - - 337 is a “normally oriented” simplex 

if oxlisafaceofaxi(G =1, ---,1). 

The points p of any simplicial complex K may be given bary- 

centric codérdinates m(p), n(p), - - -, which are continuous func- 

tions of p, and so that if p is interior to the simplex x, - - - %, 

then m,, - -, m, and only these, are = 0. Moreover, if we 

think of each simplex as a flat space, p can be written in the form 

p =2 mpr, m(p) =0, Y m(p) =-1. 

In any such complex we may define a continuous vector field by 

(17.1) 2Wp) = 2, m(PInu(p) (2, — m). 
A<p 

This is tangent to K at each p, and vanishes only at the vertices 

of p. The vectors are shown in Figure 8. 

M See S. S. Cairns, Triangulation of the manifold of class one, Bull. Amer. Math. 
Soc., 41 (1935), 549-552.
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Define this field in M", using L. For example, if n = 2, then 

in a 1-cell of the form yy] (r < s), v(p) is a positive multiple of 

¥, — 3. For p e 3ypi, v(p) is of the form 

1 0 1 

a(y;i = ) + by — ¥) + c(¥e — ¥, 
a, b, ¢ being positive. (Compare Stiefel [2].) 

  

FiG. 8 

Let L’ be the dual complex of L;its (n — 1)-cells cut the 1-cells 

of L. Since v(p) is defined and # 0 on L’*', we may deform it 

into a field of unit vectors, and hence define W" as a cocycle in 

L' (or in a locally isomorphic complex; see §15). The dual 

D(W*) = C®of W" (see § 10) isa cycle in L, a characteristic 0-cycle. 

We shall determine W=- M™ = C°-I in the case n = 2. First 

take a 77 of L’ dual to 30 in L; W(:%) = C(3?) is easily seen to be 1 

(see Fig. 8); for if we let p run around 3{ in a definite direction, 

v(p) rotates once in the same direction. If p runs around a vertex 

;, then v(p) rotates in the opposite direction, so that C(y}) = — 1. 

Similarly C(33) = 1. By adding, we obtain 

0 r 

C-I =23 Cly) = x(L), 
x being the characteristic of L and hence of M" (see §8). The 

same fact may be proved for general 7; hence® 

% This theorem is due to H. Hopl. Compare Alexandrofi-Hopf, op. cit., 
p. 549, and Stiefel, [2], p. 37.
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(17. 2) W M»=C1 = x(M"). 

ReEMARK. If 7n is odd, then 2W" is 0 (see § 14); hence 

2x(M") = 0, and x(M") = 0. 

ReMARK. If we push the points p in the direction of the 

vectors v(p), we obtain a continuous mapping of M" into itself, 

with the fixed points yj; C°-I is the sum of the indices of these 

fixed points. 

To determine Wr for r < # we may defineasetof n — r + 1 

vector fields on M™ which are independent except on L»; it may 

be shown that C" is the sum of all (n — r)-cells of L properly 

oriented if integer coefficients are used (see [5]). 

18. The characteristic classes of normal bundles. Given 

M» C M™ (compare § 19), we shall derive a formula for W~ " of 

the normal bundle; we may suppose m =< 2n. 

We may take M" C M™ C E?™+1 and suppose both manifolds 

are twice differentiable; then the normal spheres S(p) = S™"~1(p), 

at present spheres in E***!, may be taken so small that after pro- 

jecting them into M™ they form a “tube” © surrounding M™ 

in M™. 

Let K be a subdivision of M", and let ¢ be a projection of 

Kmr—1 into &. For each o™ " let ¢(p) be chosen on or inside 

S(p) in M™, so that ¢ is continuous; we may make ¢(p) #= p ex- 

cept at most at a single point of 6™ . Let K'™ " denote the set 

of all ¢(p), p € K™, this is a deformed position of K™ . Now 

the Kronecker index {cr""‘", M"]° is defined, and it is easily 

seen that it equals Wy 4(¢™ "), reduced mod 2 if necessary; thus 

Wy, is the “intersection chain” of K'™ with M"3 Clearly, for 

any chain 4™, 

m—n m—n (18.1) we A" = {4 rm—n ’ Mn}u. 

Suppose that m = 2n. Then this gives 

  

% Compare H. Whitney, On products in a complex, loc. cit., § 20.
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(18. 2) WM = {M", M"}". 

For example, let M? be a Mébius strip, and let M* be a curve 

running around it. We may push M! into a position M’! in M* 

so that it crosses M' at just one point. Hence Wi M! = 1. 

(Asm — n = 1, coefficients mod 2 must be used.) 

Suppose M" C E™is orientable. Then M*" may be thought of 

as a singular cycle bounding a singular chain 4"+ in Em. Now 

for any (m — n)-I,-cycle B’ of the deformed K'™—" (we use 

I, only if coefficients are mod 2), 

tm—n n+1 } 0 W;—n.BMn—n= {B'm—", aA"+1}:= i {aB , A , = O‘,; 

hence W§ "~ 0, and Wi~" = 0 for the normal bundle of an 

orientable M" C E™3" If M~ is not orientable, then this holds 

mod 2, but not necessarily otherwise; see Part I. 

It is also possible for us to define W} for r < m — 7 by inter- 

section properties, using the cartesian product of M* and an 

(m — n — r)-cell. 

For M» C M™ we may determine a characteristic cycle 

Cy =™ = cip-m directly, as follows: Deform M™ slightly into a 

position M'" in M™ as free from intersections with M as possible. 

Then any ¢'™=" intersects M™ in at most a single point, as before. 

The intersections will be along a set of submanifolds M?"~™, which 

may be taken as formed of cells of the dual subdivision of M™. 

If 7 =7 ™is dual to ¢ = o"~", then 7 is in M if and only if 

Wa(e) #= 0; thus M?m, as a chain, is a characteristic cycle: 

2n—m 

(18. 3) Cv = {M", M"}. 

For example, let M? be a Mébius strip in E% Then we may de- 

form it away from itself, except along an arc crossing the strip. 

Then Cy is this arc (taken mod 2). 

Now suppose M is immersed in M™; then we may define the 

3 This is proved slightly differently in [3], p. 795. The proofl may be made 
still more direct with the help of intersection chains; see footnote 36.
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(18. 4) distant intersection D{ M~} of M with itself, 

as being the set of submanifolds M?*"~™ along which M* cuts itself; 

each part of M?*~™ must be considered a chain in each of the two 

pieces of M" intersecting there. For instance, for an M! in the 

form of a figure 8 in the plane E?, D{M‘} is a point p, counted 

once in each piece of the curve; but, as is easily seen, with opposite 

signs. In fact, if M™ C E? is orientable, and n is odd, then 

D{ M~} ~ 0; for each point counts twice, with opposite signs. For 

M~ orientable or not, and any #, if M C E*", then (D { M"})s ~ 0. 
For another example, consider the usual immersion of the Klein 

bottle B?in E3. Here D [Bz} (reduced mod 2) is a circle, counted 

once as a circle on one side of part of the tube, and once as a circle 

going around another part of the tube. Note that D{B?} is 

not ~ 0. 

If M»is immersed in M™, and we wish to determine Cy¥'~™ as 

before, we must use only the local intersection, and hence remove 

the distant intersection. We find, therefore, 

n—m 

(18.5) Cv = {M", M} — D{M"} (M" immersed in M"). 

This may be checked for the B* C E? above. 

19. Product bundles. Take M" C M™ C E*. Then at each 

p € M" there are tangent planes P™(p) and 7’*(p) C P™(p), and 

a normal plane P™"(p) to P"(p) in Pm(p). The sphere 

S(p) C Pm(p) we shall call the join (or product) of the spheres 

Sr(p) = S (p) and Sy(p) = S™~1(p). Thus the part of the 

tangent bundle of M™ over M™ is the product of the tangent 

bundle of M™ and the normal bundle of M™ in M™. We shall 

write B = Br X By, or 

(19. 1) BM™, M) = B(M™) X Bv(M», M™). 

In general, given B, and B, each with the base space K, we 

may define S(p) as the join of Si(p) and S:(p), and thus define the 

product B, with the base space K.
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20. The characteristic classes of a product bundle. Recall 

that (e): is the integer a reduced mod 2; set (02): = 0z, (12)2 = 1. 

Also set w(02) = 0, w(1;) = 1 (we could use any odd number here), 

and w(a) = a for integers a. Set w(D_ a0} = Zw(a;)afi, etc. 

Define 

(20. 1) X<V = wXr— oY 

This has topological significance only in certain cases (see [4], 

§ 12); it need not even be a cocycle. Finally, set W =1 = 2 

vertices. We must be careful about meanings if non-normal com- 

plexes are used. 

THEOREM. The characteristic classes of B = B, X B are given 

by the following formulas, according as the coefficient group I, or I, 

is used itn W'; in the latter case the chains are chains of the complexes 

associated with the bundles. 

S (Wi~ W5 ); if Iy is used, 
Y Wi W, if Iois used. 

We shall call this the duality theorem; see (21.9). 

If K is a manifold, then we may define characteristic cycles; 

(20.2) W= { 

in the properly chosen complexes (20. 2) gives 

20.3) T =3, e o T {wC T we . 

We give a few special cases of the theorem: 

(20.4) W =Wi— Wi+ W, — W, = W, + W,. 

For example, if M C En, then W' = 0, and W} = W1, as is well 

known. 

(20.5) W' = (WD) + Wi— Wa + (Wi if v 2 2; 

(20.6) W = Wi = W,, 2W =0, if =9 =0, » = 1. 

The W for r odd are best found with the help of (14.1). 

21. Formal power series expressions. In this section we shall
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always reduce mod 2, and use =. Write XY for X —« V¥, (X)? 

for X — X, etc. Given any B, define 

1 
(21.1) W= Wi, W= = > wis, 

W? takes the place of 1 here. Equating coefficients in WW = 1 

gives 

(21.2) WW'= 1, W = W(=1); 

(21.3) WW'+ WW' =W+ W' =0, W' =W, 

(21.4) W24 W'W' 4+ W2 = 0, W? = W2 4+ (W2 

(21.5) W4+ WW' + WW2 4+ W =0, W= W+ (W)3; 

(21.6) W= W+ 4+ (W22 4+ WWN)? 4 (W)Y, etc. 

The duality theorem (mod 2) gives: 

QLT) W= W W= W, Wa = Wi, Wy = W 
etc. Hence, for example, 

(21.8) W.=YwWw,, W.=Yww " 

For M* C E™ we have tangent and normal bundles, 8r and 

By. The duality theorem gives, as W = 1 for E™, 

(21.9) Wr = Wy, Wy = Wr (for M" C E"). 

22. Proof of (20. 6). This case of the duality theorem is rela- 

tively simple to prove. We choose it also since it shows why 

products must be used, and it illustrates the use of non-normal 

complexes. 

Choose coérdinate systems &,,3 for 8B, so that (11. 3) holds. 

The system £,,:(p) maps e; and — e (the points of SJ) into the 

two-points of Si(p). Choose £, 2 for B; so that (11. 3) holds, and 

so that £,.(p) maps e; and — e; into Sy(p). Then if we map S5 

into S(p), £,(p) may be defined as follows: 

E(p, aey + bes) = ak,1(p, e1) + bke.2(p, €2) (a2 + b2 = 1);
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then (11. 3) holds for the £,. 

Set, for each vertex x; of K, 

(22. 1) d(x) = Exa(xi, @) = E2.(x, €), 

(22.2) @' (%) = £ o(x, €2) = E- (2, €2) 

then (compare (12. 1), etc.) 

(22. 3) Velm) = e, () = ea 

Let these define W} and W respectively. Let St be the upper 

semicircle of &, from e, through e; to — ;. Take any ¢! = xix; 

(¢ <j). By (11.3) and (22. 3) ¥a(x:) = e1. Hence, by defini- 

tion of Wi(e"), Ya(x;) = &1, or — e, according as Wi(e!) = Osor 1,. 

In the former case set ¢(p) = Ea(p, €1) (p € d'); in the latter case 

define ¢(p) so that ¥a(p) runs across St as p runs from x; to x;. 

Let¢ define W2 Takeanyo? = x,x;%: (1 < j < k). Weshall 

show that, if Wj(xix;) = 02 or Wi(x;xi) = 0,, then W2(g?) = 0, 

while if W(x:x;) = Wi(xx) = 1g, then 

W) = =1 if Wilzix;) = O, 
(22. 49) 2, 2 ) 1 

Wi)=<4+1 if Wilxx;) = 1, 

This will prove 

1 

"’WE(xixi)“’W:(xixk) = — P[W:(x-'xi)]Wz(Uz)' 

and hence, using (15. 8), we find the required formula, 

We= — (WS W) ~Wis Wi o Wy = Wa 

Now W(g?) is the degree d of the mapping y.:(p) of d¢% into S 

We shall determine d by counting the algebraic number of times 

that y,:(p) crosses the semicircle S~ opposite S*; the positive 

direction of S~ is from — e; through — e; toward e,. 

On account of (11. 3) Yaa(p) = ¥..;(p) in xix;, and = Y2,5(P) 

in x:x:; hence Y,» maps x;x; + x;x; into S*. We must still con- 

sider x;xy. 

Suppose Wj(xix;) = 0s. Then ..., (x;) = €2, i.e.£zz;.2;2(%0 €2)
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= €3. Since Es,-:;,z = Ev’fl and E’,’.fi = Ezi:g,h this giVES 

£, z;m2(s, €2) = 3, and hence 

Evz.:jq(i’, 32) = €2, P € xix:. 

Since Y.z, maps xxx into S*, the same is true of 

vo2(p) = s, zizu( ) Vay=(2)); 

Lkence d = 0. We suppose now that Wj(x.x;) = 1,, in which case 

Va(p) maps x;x; into S~ (or into an end of it). 

Suppose that Wi(x;x;) = 0;. Then as W}-do2 = §W; a2 = 0, 

Wi(xar) = Wixx;), and Yz (xk) = ¥a.o,(x;); hence, by (11. 3), 

Va(x;) = Ya(xy), so that Ya(p) = constant for p € x;x¢, and again 

d = 0. 

Suppose, finally, that we have W3(x.ix;) = Wi(xxe) = 12 If 

Wi(xix;) = 0z, then Yo(x;) = ¥:.55(x;) = €1, Yaa(xx) = — €1, and 
V.2(p) runs along S~ from e to — e; hence d = — 1. If 

Wi(xix;) = 13, then ¥a(x;) = — e, Ya(xx) = €1, and Ya(p) runs 
in the other direction, and & = 1. This proves (22. 4) and hence 

(20. 6). 

23. The characteristic classes in low-dimensional manifolds. 

We shall study the characteristic classes of the tangent bundies of 

manifolds of dimensions 2, 3, and 4. Certain results follow from 

the fact that M may be immersed in E?*, More detailed results 

follow from a study of the parts of the classes in submanifolds 

of M, 

Suppose M" is imbedded in E™. Then (W§ ™), = 0, by § 18. 

Hence, by use of (21. 9), 

(23.1) Wz "=0 if M" canbe imbedded in E". 

Recall that M* can always be immersed in E?*, so that the 

distant intersection D{M"} is ~ 0 (mod 2) (see §18); hence 

(Wr): = 0, and Wp = 0. Using a remark in § 17, and (21. 4), 
etc., we have, therefore,’® 

  

% These relations are trivial if M™ is open or bounded; for then the highest 
cohomology group vanishes.
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(23. 2) in any Mz, Wr + (W;)2 = 0; 

(23. 3) in any Ma, (W;)a = 0; 

(23. 4) in any M4, Wi + (W;-)2 + W;(W;)z + (Wr)' =0, etc. 

Formulas (23.2) and (17.2) show that in any closed M?, 

(W' — W!')- M? = 0, or 1, according as x(M?) is even or odd; 

hence, if M? is orientable, x(M?) is even. Formula (23. 3) gives 

no information in case M? is ortentable. 

Lemma. For any smooth closed curve M in M?, 

(23. 5) (M", MY =w M. 

For the tangent bundle of M"! is simple; hence, by (18. 2) and 

(20. 4), 

(M, Mo =Wy M =W +wn) M =w .M. 
LEMMA. For any 1-Ir-cocycle X! of any M?, 

(23. 6) (X' — XY-M? = (X' — W) M2 

This follows [rom the last lemma, on using a cycle dual to X, 

which is homologous to a sum of smooth curves in M?2. 

LEMMA. Any2 - Ig-cycle (2 - Is-cycle) in any M" is homologous 

to the sum of a set of lisjoint closed oriented surfaces (closed sur- 

faces) imbedded in M". 

This lemma, due essentially to Stiefel,* is proved by consider- 

ing the cycle a singular cycle, and making small deformations until 

surfaces are obtained. 

THEOREM. In any M3, 

(23.7) W2 =W'-— W, 
  

» Stiefel, [2], p. 48. It would be very useful to obtain such a lemma for 
r-cycles, r > 2. Possibly the use of the lemma can be avoided below by the 
following method: Define the “characteristic tangent classes” of a cycle by the 
formulas of § 17; define “characteristic normal classes” of a cycle by formulas of 
§ 18; prove that the duality theorem holds with these definitions.



DIFFERENTIABLE MANIFOLDS 137 

ReMARK. Thus W? = 0, a seemingly stronger condition than 

(23. 3). 
If we use a theorem in § 9 and the last lemma it is sufficient 

to show that for any closed M?*in M3, W2 M2 = (W' — W'). M2 

Now W% = 0, as the normal bundle of M? in M? consists of 

0-spheres. Hence, using (20. 5), (20. 4), (23. 2), and (23. 6) with 

X! = W!, we find 

WM = (Wr4 Woe (W + Wr) + Wale M 
=X Wr—Wr) M + (W - WM =w' < w) M 

COROLLARY. In any orientable M3, W2 = 0. 

A different proof, not using (20. 3), is given by Stiefel [2, p. 39]. 

It follows that the tangent bundle of any orientable M? is simple 

(see [2, p. 7] or [3, p. 788); hence a “parallelism” may be defined 

in M3 

THEOREM. In any orieniable M*, W3 = 0. 

We shall sketch the proof. By § 9 it is sufficient to prove that 

for any 3-I,-cycle 43, 

A3 W3 = A% (30wW?) = 0,. 

Choose a 3-Iy-chain B?® with (B?), = 43; say dB? = uC? Then 

AS- W3 = [3u(C?-wW?)],; hence it is sufficient to show that 

(C?-wW?); = 0q, i.e. that C?- W2 = 0. 

Let M;, M3, - - - be disjoint oriented surfaces in M* with C? 

~ Y_M?. Since uy_ M;~ 3dB*~ 0, we can choose a singular chain 

D3in M* with @D® = ) _uM?. Let D} be the part of D3 near M7; 

say 0D} = uM} + Ei. The chain E? may be considered a cycle 

in the total space Sy of the normal bundle of M? in M*. 

Let PE? be the projection of E? into M{; then uM} ~ PE; in M;. 

But it may be shown that any (v + 1)-cycle in a complex K which 

may be obtained as the projection of a cycle in &, for a bundle B of 

v-spheres over K, is orthogonal to W**1(K). Hence uM}; - W¥%..=0. 

Since I, is used in W%, M}-W%.: = 0. Since M? is orientable,
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L.=0. Also, by (23.2), W%, - M? = 0 (mod 2). Therefore, 

by (20. 5), 

WZ_M? = (W;. + W;',.- U W):,vi + W:',i)z-M? = 0, 

Hence C*- W? = 0, as required. 

24, Example of an M3 with W? =< 0. Let P? be the projective 

plane. Let M? be the cartesian product of P? and a 1-sphere. 

We may regard P? as imbedded in M3; then clearly Wy = 0. 

Hence Wi = W' over P?, and since x(P?) = 1, (23.7), (20.4), 

(23. 2), and (17. 2) give 

whP =W uwh) P = WruWs) P = WP =1y 

hence W? = 0. We could also use (20. 5) to prove this. 

We shall study more fully an example to be used in § 25. 

Consider the cylinder plus interior L3: 

24 9?2 <1, —1=<z=1. 

Now make the following identifications: 

(z,3,2) =(— % — 32 (43 =1), (x, 5, — 1) = (2, — 3 1). 

We obtain M3, which may easily be expressed as a differentiable 

manifold. The identifications define a continuous mapping f of 

L3into M3 Define, in L3, the subsets 

(24. 1) P2z =0, 0:x =0 

Si:x=7y=0; 321:x=z=0; Po:x=y=3=0. 

Set P? = f(P?), etc. Then P?is a projective plane, Q2 is a Klein 

bottle, and S} and S} are simple closed curves. 

We may show that 

(P, P}a~0, (P’ Q")a~ (SDa. 
{0, 0"} e ~ (51 + 5D, 

(P, S1)}s~ ()2, [P, S2}a~ {Q7 S1)2~ 0, 
{Q2v 5:}2 ~ (po)2. 

(24. 2)
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For instance, by increasing z we deform P? away from itself; 

applying f deforms P? away from itself; hence {P?, P2} ~0. If 

for z = } we twist 02 in one sense through an angle @, and for 

z £ — } we twist it in the opposite sense by the same amount, 

and for — } £ z < } we twist it by an amount varying continu- 

ously, then applying f deforms Q2 into Q'%; we clearly have 

{02 02}s = (S1 + S 
We shall determine the characteristic cycles C” of the tangent 

bundle of M3 Of course, C* = M™, in the associated complex. 

Also C° = 0, since 3 is odd. Further, 

(24.3) C' =@ +0%% C'=(51+ S 

To prove the first relation we note that S} and S} both reverse the 

orientation in M?; this checks with 

(s, PP+ Q)= {sn PP+ 02 =1 
The second relation follows from this, (23. 7), and (24.2). (In 

the dual form Ct = {C?, C?}.) 

Note that, if the cells of M? are properly oriented, we find* 

(24. 4) aM?® = 2(P? + (02). 

25. Example of an M* with W? = W3 < 0. By (23. 1) this M* 

cannol be imbedded in E7. 

First define M3 as in §24. Determine 8, as the 0-sphere 

bundle with M3 as base space for which 

Ci = () 
Let B be the product of B, and a simple 0-sphere bundle B; over 

M. We set M* = &(B). 

Since B: is simple, f(p) = & 2(p, e:) defines a projection of M} 

into M#4; let M3 be the set f(M3). Use P2in M3, etc. 

Consider the normal bundle By(M?3, M*) of M3 in M*. For 

. 9 It may be shown in general that, if aM" = 2C*"!, then C*!is a character- 
1stic cycle, dual to W
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any q& M3 say g&S(p), pe M3 we may regard the normal 

0-sphere S~ (g) of By as being realized by the pair of points of S(p) 

orthogonal to g. But these are just the points of Si(p) of the 

bundle 8B:; hence we may consider By = B;. In particular, 

(25. 1) crvM’, MY = (@) 

If C3(M*) is a characteristic cycle of M*, dual to W*, then 

C:(M*; M?) = {Ca(M“), Ma} 

is dual, in M?, to the part of W' over M. By the duality theorem, 

(24. 3), and (25. 1), 

3 ct, iy~ 'y + v’ My = (P)y in M. 

From this it follows that 

(25.2) Cs(M4) ~ @(P:)g (total space over P: in B). 

As P} can be deformed away from itself in MJ, so can &(P7) 
in M*; hence 

(25.3)  [CHM?),CH{MH} ~0, Wi W'1=0, (W)3=0. 

Next, since Cy(M?3, M*) = 0 (the spheres being 0-spheres), the 

duality theorem and (25. 1) give 

c'w’; MYy ~c'afy + (), en(M’, M) 

~(Si4 S+ [P+ 0", Q') a~ (5D 
Hence 

25.4) {C'MY), M} ~(Se  C'(MY ~ &S 

We must determine C'(M*). Since W3(M*) is a cocycle of the 

complex associated with the tangent bundle of M?, its dual, 

CY(M*), is a cycle of the geometric complex of M* (compare (15. 5)). 

We determine it by (14. 1) and (25. 4): 

C'(MYy = 30.C’ (MY = 10&(S).
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Now in M3, 

{30, C'(B)}2 = {S20, C'(B)) + C'(B)}2 = {Saw Go}2 = 135 

hence the orientation of B is reversed over Sy. Therefore 

&(Sy) is a Klein bottle, and we may orient its cells so that 

96(S3) = 28(peo). (This is equivalent to a choice of w above.) 

Hence 

(25. 5) C' (') = 108(52) = S(pw). 

Using (21. 5) and (25. 3) we have 

(25.6) CH{M*) = CY M) = S(po)- 

Since this is not ~ 0 in M* (although twice it is), C!(M*) = 0, 

and W3(M?*) » 0. 

REMARK. If M*isimmersed in E?, then we may find the dis- 

tant intersection (mod 2) from (18. 5), (25. 6), and (21. 9); since 

{M"‘, M‘} ~ 0 (mod 2), 

p{M') = (M", ') +cuut', EN 

= Cr(M") = B(pu). 
For further examples see [5]. 

(25.7) 
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